
A Robust and Portable Approach for Extracting
Build-System Variability
Bachelorarbeit im Fach Informatik

von

Christian Dietrich

geboren am 05.12.1989 in Rothenburg o.d.T.

Lehrstuhl für Informatik 4
Friedrich-Alexander Universität Erlangen-Nürnberg

Betreut durch:

Dipl.-Ing. Reinhard Tartler
Dr.-Ing. Daniel Lohmann

Prof. Dr.-Ing. habil. Wolfgang Schröder-Preikschat

Beginn der Arbeit: 1. April 2011
Ende der Arbeit: 30. Juni 2011

Hiermit versichere ich, dass ich die Arbeit selbstständig und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gle-
icher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat
und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Stellen,
die dem Wortlaut oder dem Sinn nach anderen Werken entnommen sind, habe
ich durch Angabe der Quelle als Entlehnung kenntlich gemacht.

Erlangen, den 9. Juli 2012

Kurzzusammenfassung

Ein Build System spielt, neben dem tatsächlichen Quellcode, eine wichtige
Rolle in einer Software Produkt Linie und deren Entwicklung. Es kontrolliert
den Prozess des Übersetzens und Fertigstellens eines Software Produkts und im-
plementiert einen Teil der statischen Variabilität zur Übersetzungszeit in einem
statisch konfigurierbaren System. Mit mehr als 11000 optionalen und alterna-
tiven Merkmalen, ist der Linux Kernel ein solches Stück statisch konfigurierbarer
Software. Das Build System des Linux Kernels, genannt Kbuild, verwaltet den
Einfluss von beinahe 8000 dieser Merkmale auf den Übersetzungsprozess. Da-
her müssen variabilitätsgewahre Ansätze zur statischen Analyse diesen Einfluss
beachten. Allerdings ist es schwierig die Variabilitätsinformationen aus solch
einem Build System zu extrahieren, da sich bisher kein Standard für solche Sys-
teme entwickelt hat. Selbst für ein spezifischen Build System ist der Extraktion-
sprozess schwierig, da häufig deklarative und Turing-vollständige Sprachen, wie
die make Sprache in Kbuild, verwendet werden. Das Problem wird noch drastis-
cher, wenn mehr als eine Version des Build Systems betrachtet werden soll. Nach-
dem, in dieser Arbeit,ein robuster Ansatz zur Extraktion von Variabilitätsinfor-
mation aus dem Linux Build System beschrieben wird, wird ein verallgemeinerte
Version der verwendeten Ideen hergenommen, um solche Variabilitätsinformatio-
nen auch aus anderen Build Systemen zu extrahieren. Wie die Ergebnisse zeigen,
ist der Ansatz robust, in Hinsicht auf die Entwicklungsgeschichte von Linux und
einfach portierbar auf andere Build Systeme.

Abstract

Build systems play, besides the actual source code itself, an important role
in a software product and its development. They control the build process and
implement a part of the compile-time variability within a static configurable
system. With more than 11,000 optional and alternative features, the Linux
kernel is such a static configurable piece of software. Its build system Kbuild
manages the influence of nearly 8,000 of these features on the build process.
Hence, variability-aware static analysis tools have to take the influence of the
build system into account. But extracting the variability information from a
build system is hard, since no real standard for such systems has emerged yet.
And even for a specific build system the extraction is challenging, because often
declarative and turing-complete languages, like the make-language in Kbuild,
are used. The problem dramatically increases when more than one version of
the build system should be taken into consideration. After describing a robust
approach for extracting implementation variability from the Linux build system,
a more abstract version of the used ideas is presented and the approach is ported
to different build systems. As the results show, the approach is robust in respect
to the development history of Linux and easily portable to other build systems.

4

Contents

Contents

1 Introduction 6
1.1 Variability at different places . 6
1.2 Variability in Linux . 7
1.3 Build-system Variability-Models 8

2 A Robust Approach for Variability Extraction from the Linux Build
System 9

3 A portable Approach 20
3.1 Abstracting Build-System Variability 20
3.2 Finding the Active Variation Points 21
3.3 Collecting Expressions . 21
3.4 The Common Probing Algorithm 22
3.5 Exemplary Operation . 26
3.6 Summary . 27

4 Fine-Tuning the Probing Approach 28
4.1 Parallelization . 28
4.2 Non-Boolean Features . 29
4.3 Implementing Special Cases . 30
4.4 Summary . 30

5 Case Studies 32
5.1 Kbuild: Linux . 32
5.2 Kbuild: BusyBox . 33
5.3 Fiasco: Hohmuth-Preprocessor 34
5.4 Summary . 36

6 Further Related Work 37

7 Conclusion 38

Appendix 39
Bibliography . 39
List of Figures . 41

5

1 Introduction

1 Introduction

At the dawn of computer science, most programs were relatively small in regard to
code size, implemented features and complexity. The resources were limited and
the program was hand-optimized for a specific problem. There was no operating
system, because there was no need for it and all communication with the outside
world was done within the manufactured program.
Over the years and with growing amounts of memory and processing power

available, the programs became bigger and more complex. They solved more
complex problems or even more than one problem. Code libraries – collections
of useful subroutines and functions – and operating systems, which were libraries
in the beginning, emerged.
The complexity, which came hand in hand with the now bigger programs, was

faced by improved software engineering paradigms, like higher-level programming
languages and modularization. One very essential meta-paradigm in the devel-
opment of software is the wish to reuse as much code as possible, since developer
hours are expensive. This leads to the phenomena that a new software product is
not always written from scratch, but implemented as an additional and optional
feature to an already existing software product. The new feature can use the
intra-program infrastructure and, when designed properly, does also enhance the
base-line software product. By augmenting the base software a software product
line is born:

A Software Product Line (SPL) is a set of software-intensive systems
that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are devel-
oped from a common set of core assets in a prescribed way.[1]

From the definition of the term Software Product Line we conclude that a
SPL consists of a software which is partitioned into features. For a specific
software product the SPL is tailored to the specific needs of the use case. In
the configuration process a subset of all available features is selected. From this
feature selection a concrete software product is built and shipped to the customer.
The finished software product is a variant of the SPL.

1.1 Variability at different places

During the configuration process, the user of the SPL, who might be a domain
expert in the application field of the SPL, has to select from the provided features.
Those features might have connections between each other, like dependencies
or cardinality constraints. After the selection process, the tailoring process of
the SPL is started to produce the specific variant. In case of static variability,
like compile-time variability, the build process is driven by the feature selection.

6

1 Introduction

l0: Feature Modeling (e.g., Kconfig in Linux, etc.)

l1: coarse-grained: make (e.g., Kbuild in Linux, etc.)

l2: fine-grained: cpp

l3: language level: gcc

l4: linking level: ld

l5: Runtime Variability: insmod, modprobe, ...

K
config

driven
variability

Figure 1: Abstract overview over the dominance hierarchy of variability implementations
(taken from [2])

The selected features have influence on the inclusion of source-code files and the
operation of preprocessor, compiler and linker.
Two aspects of feature handling in SPLs can be distinguished. The first aspect

is the declaration of features. This declaration might be implicit or explicit. Im-
plicit feature declarations are for example preprocessor macros in a header file. In
contrast is a feature declaration language, like Kconfig, which is interpreted by
a configuration tool, an explicit declaration. Whether the declaration is implicit
or explicit, it states the intentional feature model.
The second aspect of feature handling is the extensional feature model. The

extensional feature model is formed by all points in the SPL where a specific
feature selection influences the produced software product. Such a point will be
called a variation point (VP). A VP is influenced by a subset of all declared
features and their selection state.
VPs may appear at different grained levels [2]. It may control, on a coarse-

grained level, whether a source-code file is compiled into the product. But it might
also control, on a fine-grained level, whether a specific source-code statement is
processed by the compiler.

1.2 Variability in Linux

To illustrate these different levels of variability, and how the extensional side is
controlled by the intentional side, I give a short overview over the variability in
the Linux kernel: Linux is a SPL with a big amount of static variability. The
features are declared on level l0 with a domain specific language, which is parsed
and interpreted by Kconfig. Kconfig, and its various user frontends, is also
the name of the configuration tool, which is used by the domain expert to select

7

1 Introduction

the feature subset for the specific variant of Linux.
Static VPs are present on the coarse-grained level l1 in the Kbuild build system

and on the fine-grained level l2, encoded with the C Preprocessor (CPP) [2]. On
the coarse-grained level the inclusion of whole files into the software variant is
influenced by the feature selection. On the fine-grained level the inclusion of single
preprocessor blocks, which may boil down to the sub-statement language-level, is
controlled. The other layers (l3− l5) are only partially, or indirect, influenced by
the static selection of features and represent the run-time variability (or dynamic
variability) of a compiled Linux kernel.
The different variability levels in Linux and their interaction has been observed

as a source of bugs [3, 4]. Inconsistencies between the intentional and the exten-
sional side may lead to a VP that cannot be enabled or disabled and is therefore
no real variability point. The different levels of variability make it also hard for
a static analysis tools to cover all possible code paths [5]. Efforts were done
towards variability-aware parsing of the fine-grained level and variability-aware
type checking [6, 7].
A variability model is a collection of all VPs in a given part of the declara-

tion or implementation and contains all necessary constraints between the VPs.
Therefore a variability model, as well for the intentional as for the extensional
side, is necessary to find inconsistencies and achieve full configuration coverage.
Even for the variability-aware parsing approach, which handles only l2, variabil-
ity models for l0 and l1 are needed. Variability models for the intentional side
was done by She and Berger [8]. On the extensional side it was surprising, that
about 60% of the VPs in Linux are located on the coarse-grained level l1 [2], and
not as assumed before on the fine-grained level l2. This observation leads to the
conclusion that a proper build-system model is essential for further analyses.

1.3 Build-system Variability-Models

The Linux build system is written as a collection of make [9] scripts, which
are known under the name Kbuild. They provide a simple interface for the
programmer to make a source file dependent on a certain feature. But since the
fragments that encode these VPs, are also make scripts, the whole functionality
of make might be – and is – used.
In the case of this build system a source-code file and the constraints under

which the file is considered during the build process represent a VP. A few
methods were proposed to extract the variability model from the make scripts.
These approaches are based on parsing the make scripts directly. But since the
make syntax is very complex and the language turing-complete – it does even
support execution of arbitrary Unix-commands – the parsing is arbitrarily hard
and tailored to the specific idioms that are used within Kbuild at the time of
writing the parser.
In the following chapters of this work, a non parsing based approach for ex-

8

2 A Robust Approach for Variability Extraction from the Linux Build System

tracting variability models from build systems is presented. It exploits the build
system itself, is robust in respect to the development cycle of Linux over many
years, and is easy to adapt to other systems that encode VPs, when they are
structured in a similar manner to Kbuild.
The thesis is structured as following: Section 2 is a paper that describes the

non parsing approach and applications for it on the Linux build system. Section 3
gives an abstract build-system model and elaborates on a common version of the
non parsing approach. Section 4 add various extensions to the common version
of the approach. Section 5 presents three case studies of the approach. Section 6
collects further related work, additionally to the related work that is already
mentioned in Section 2. Section 7 concludes the thesis.

2 A Robust Approach for Variability Extraction from the
Linux Build System

I have described the non-parsing based approach together with Tartler, Schröder-
Preikschat and Lohmann [10] in a paper that was accepted to the Software Prod-
uct Line Conference 2012. Writing this conference paper was part of this thesis.
It was directly accepted with four peer reviews.
In the paper i describe a probing-based approach, that exploits the build sys-

tem itself to calculate a variability model for the extensional VPs in the Linux
build system Kbuild. Afterward the result is compared to two parsing-based
approaches (Nadi and Holt [11] and Berger et al. [12]) and it is shown that the
probing-based alternative is much more robust in respect to the development his-
tory of Linux over many years. Additionally two applications for a build-system
variability-model is given, and it could be shown that these models highly improve
the results of these applications.
The paper is concentrated on the Linux build system, but the idea is easily

applicable to other systems that encode variability similar to Kbuild. This
application is done in Section 3. The rest of the section is filled by a accurate
copy of the paper.

9

A Robust Approach for Variability Extraction from the
Linux Build System

Christian Dietrich Reinhard Tartler
Wolfgang Schröder-Preikschat Daniel Lohmann

{dietrich, tartler, wosch, lohmann}@cs.fau.de

Friedrich-Alexander University Erlangen-Nuremberg, Germany

ABSTRACT
With more than 11,000 optional and alternative features, the Linux
kernel is a highly configurable piece of software. Linux is generally
perceived as a textbook example for preprocessor-based product
derivation, but more than 65 percent of all features are actually
handled by the build system. Hence, variability-aware static analysis
tools have to take the build system into account.

However, extracting variability information from the build system
is difficult due to the declarative and turing-complete MAKE lan-
guage. Existing approaches based on text processing do not cover
this challenges and tend to be tailored to a specific Linux version
and architecture. This renders them practically unusable as a basis
for variability-aware tool support – Linux is a moving target!

We describe a robust approach for extracting implementation
variability from the Linux build system. Instead of extracting the
variability information by a text-based analysis of all build scripts,
our approach exploits the build system itself to produce this infor-
mation. As our results show, our approach is robust and works for
all versions and architectures from the (git-)history of Linux.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; D.2.9
[Management]: Software configuration management

General Terms
Design, Experimentation, Management

Keywords
Configurability, Maintenance, Linux, Build Systems, Kbuild, Static
Analysis, VAMOS

1. INTRODUCTION
System-software product lines usually employ compile-time con-

figuration as a simple and widely used technique for tailoring with
respect to a broad range of supported hardware architectures and
application domains. A prominent example is the Linux kernel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC ’12, September 02 – 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1094-9/12/09 ...$15.00.

KCONFIG features

11,821 [100%]

KBUILD interpreted

7,911 [66.9%]

KBUILD only

5,941 [50.3%]

75.1%

KBUILD/CPP

1,970 [16.7%]

24.9%

66.9%

KCONFIG internal

1,870 [15.8%]

15.8%

CPP interpreted

4,010 [33.9%]

CPP only

2,040 [17.3%]

50.9%

33.9%

49.1%

Ê

ÊË

Ë Ë

Ì

ÌÌ

Figure 1: Statistic how the features, declared in KCONFIG, are
referenced by source-code and Makefiles in Linux v3.2

The Linux KCONFIG feature model provides more than 11,000 con-
figurable features in Linux v3.2. The thereby described intended
variability is implemented by 28,000 source files containing 84,000
#ifdef-blocks.

In previous work, we could show that intended and actually im-
plemented variability (i.e., the KCONFIG feature model and the
variability points in the code) do not necessarily match. However,
many configurability-related defects, such as dead #ifdef-code, and
bugs, can be found upfront by better tool support [29]. This eventu-
ally has led to (accepted) fixes for twenty new bugs and the removal
of 5,000 superfluous lines of #ifdef-code in Linux v2.6.36. How-
ever, these numbers are just the tip of an iceberg. The lesson to be
learned from this is: Variability has to be understood, analyzed, and
tested as a system property in its own respect. For a system-software
product line at the size of Linux, this requires profound and robust
tool support.

1.1 The Role of the Build System
A crucial building block for variability-aware static checking

tools are reliable extractors that transform the actually implemented
variability from their various sources into a formal model. Ex-
isting studies (including our own) have mostly focused on the
C Preprocessor (CPP) as a means to implement features in Linux [13,
14, 25, 28, 29]; however, in Linux, variability is mostly implemented
in a more coarse-grained manner (Figure 1): Only a third (33.9%)
of all features do affect the work of the CPP, that is, have an effect
on the sub-file level. On the other hand, two third (66.9%) of all
features are referenced in the build system (KBUILD). These fea-
tures have an effect on the selection of whole files into the build
process. Hence, we need robust tools to extract the implementation
variability from the Linux build system.

2 A Robust Approach for Variability Extraction from the Linux Build System

10

1.2 Related Work in a Nutshell
Approaches to extract implementation variability from KBUILD

have previously been published by Berger et al. [4] and Nadi and
Holt [18]. A common characteristic of both approaches is that they
rely on text processing of makefiles, that is, they employ parsing
(Berger et al.) or clever regular expressions (Nadi and Holt) to extract
the presence implications for Linux source files from the build
scripts. However, the underlying MAKE language is a declarative
and turing-complete language; its advanced features, such as the
$(eval), $(shell), or $(wildcard) functions, make it notoriously
difficult to analyze. If these features are used, a text-processing–
based approach quickly hits its limits, since the enclosed fragments
may be for instance arbitrary shell command.

Even worse from a practical point of view is, however, that the
existing approaches are brittle with respect to evolutionary changes
in the KBUILD system itself: To achieve good results, they have to
provide explicit support for many corner cases of KBUILD analysis,
which effectively tailors them for a specific Linux version and ar-
chitecture. While this might be perfectly acceptable if the goal is to
analyze a certain Linux version, it renders them as practically unus-
able as a basis for general variability-aware tool support – Linux is
a moving target.

1.3 About this Paper
The contribution of this paper is a robust approach for extracting

implementation variability from the Linux KBUILD system. Instead
of text processing, our approach exploits the build system itself to
produce this information. Thereby, our approach is not only simple
to implement, but also robust with respect to evolutionary changes
and the usage of advanced MAKE features. Our evaluation results
show that our approach works for all versions and architectures from
the (git-)history of Linux and reliably extracts presence conditions
for more than 93% percent of all source code files. In two appli-
cations, we show that the presented implementation significantly
improves our previous results on configuration defects [29] and
configuration coverage (CC) [28].

The context of this work is the VAMOS 1 project, funded by the
German Research Council (DFG). The goal is to provide practical
tools for analysis and management of variability in system software.
So far the produced tool hav produced over 100 patches that have
been integrated into the Linux mainline kernel.

The remainder of this paper is structured as following: In Sec-
tion 2, we introduce the background and technical context and
analyze the challenges in build-system analysis. This is followed
by the description of the basics of our approach in Section 3. Then,
we analyze the results in Section 4, followed by two applications in
Section 5. After discussing the results in Section 6 and an overview
over further related work in Section 7, the paper concludes with
Section 8.

2. VARIABILITY IN LINUX
The scattered nature of variability and variability implementation

in Linux makes holistic reasoning challenging. In practice, the
analysis of the different models, languages and representations of
variability requires very specialized and sophisticated extraction
tools. A solid understanding of how the Linux build system KBUILD
and the configuration tool KCONFIG play together is instrumental to
correctly relate variability implementations from different extraction
tools. This subsection analyzes the mechanics of KBUILD and
identifies the challenges for an automated extraction of variability.

1Variability Management in Operating Systems

Source files

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

CPP

autoconf.h

ld numa.o <...> -o vmlinux

drivers.kovmlinuz

Root Feature

Kconfig
selection

1

.config

3

4

Build scripts

Makefile
arch/x86/init.c

arch/x86/...
arch/x86/entry32.S

lib/Makefile
kernel/sched.c
...

auto.conf

2

kbuildKbuild

kbuildKconfig

derives from

coarse-grained
variability

fine-grained
variability

drives and controls

derives from

gcc -O2 -Wall -c numa.c -o numa.o

Figure 2: Overview of the technical realization of software vari-
ability in Linux. The coarse-grained varibility implemented in
makefile dominates fine-grained varibility in CPP code.

2.1 Levels of Variability
In a nutshell, static configurability is specified and implemented in

Linux top-down on three major levels, for which Figure 1 illustrates
their quantitative relevance:

Ê The configuration system (KCONFIG) defines the available
features and their constraints (intended variability) and pro-
vides an interface to specify and manage a concrete (product)
configuration.

Ë The build system (KBUILD) implements coarse-grained vari-
ability in the code by inclusion and exclusion of complete
translation units in the build process. The produced build
products include object files, the bootable kernel image and
loadable kernel modules (LKMs).

Ì The CPP implements fine-grained variability by inclusion
or exclusion of #ifdef-blocks within the files selected by
KBUILD.

Figure 2 describes the Linux toolchain that drives the compilation
process. At the top, the Linux feature model defines the (inten-
tional) product line variability [16, 20]. Here, the user selects a
concrete product configuration with the KCONFIG tool and saves
his selection to a file named .config. The Linux build system
KBUILD transforms the thereby encoded feature selection into two
further representations: An auto.conf file in MAKE-syntax and an
autoconf.h file in CPP syntax (Figure 3). Technically, these repre-
sentations control the (extensional) software variability [16, 27] in
makefiles and C source code during the compilation process.

For the CPP representation, an additional normalization step is
applied for tristate features: Many features, especially device drivers,
can be configured as compiled into kernel, compiled as loadable
kernel module or disabled. To ease the use in #ifdef statements,
KCONFIG maps this to boolean flags by inserting an additional CPP
variable with the _MODULE, suffix into autoconf.h for each tristate
feature (Figure 3).

2 A Robust Approach for Variability Extraction from the Linux Build System

11

(a) KCONFIG output: .config

SMP=n
PM=y
APM=m

(b) MAKE representation: auto.conf

CONFIG_SMP := n
CONFIG_PM := y
CONFIG_APM := m

(c) CPP representation: autoconf.h

#undef CONFIG_SMP
#define CONFIG_PM 1
#undef CONFIG_APM
#define CONFIG_APM_MODULE 1

Figure 3: Representation of a feature selection

In Step Ë, the MAKE representation of the current feature se-
lection is then used by KBUILD to implement the coarse-grained
variability on a per-file basis. All thereby included translation units
are passed to the compiler, which in turn uses the CPP representation
during preprocessing (Step Ì) to implement the fine-grained con-
figurability. The invocation of the compiler and linker is, however,
controlled by KBUILD,2 which again uses the MAKE representation
of the current feature selection to construct compiler and linker
options used in Step Í for creating the build goals: The vmlinuz

kernel image and the library of loadable driver objects.

2.2 Variability Implementation in Kbuild
As detailed in the previous section, KBUILD gets a file auto.conf

that describes all selected features and their values in MAKE syntax.
KBUILD then resolves which file implements what feature, deter-
mines the set of translation units that are relevant for a given config-
uration selection, and invokes the compiler for each translation unit
with potentially configuration-dependent settings and compilation
flags. Internally, KBUILD employs GNU MAKE [26] to control the
actual build process; in Linux v3.2 the mapping from features to
translation units is encoded in 1,568 makefiles that are spread across
the source tree. However, Linux makefiles look quite different from
typical text-book makefiles as they employ KBUILD-specific idioms
to implement Linux-specific (variability) requirements, such as [11]:

• Optional features: Many features, such as drivers, are
present (or absent) by deciding about the inclusion of their
respective implementation files.

• Tristate features: Linux allows most drivers to be compiled
either statically into the kernel or as LKM.

• Loose coupling: The decision about what set of files is used
for a given configuration can be specified at various levels of
granularity (such as disabling a complete subsystem by not
descending a subdirectory).

In the following, we provide further details on these idioms, as they
are relevant for this paper.

2.2.1 Optional and Tristate Features
In all makefile fragments, we can find two variables that collect

selected and unselected object files: The make variable obj-y con-
tains the list of all files that are to be statically compiled into the
2The exact mechanisms are fairly technical and have already been
discussed elsewhere (e.g., [11, 17]).

kernel. Similarly, the variable obj-m collects all object files that will
be compiled as LKM. Object files in the make variable obj-n are
not considered for compilation. The suffixes {y,m,n} are added
by the expansion of variables from auto.conf (Figure 3).3 This
pattern for managing variability with KBUILD is best illustrated by
a concrete example:

1 obj-y += fork.o
2 obj-$(CONFIG_SMP) += spinlock.o
3 obj-$(CONFIG_APM) += apm.o

In line 1, the target fork.o is unconditionally added to the list
obj-y, which instructs KBUILD to compile and link the file directly
into the kernel. In line 2, the variable CONFIG_SMP, which is taken
from the KCONFIG selection, controls the compilation of the target
spinlock.o. The variable derives from the feature SMP, which is
declared as boolean. Therefore, spinlock.o cannot be compiled
as LKM. When the feature selection from Figure 3 (b) is applied,
CONFIG_SMP has the value n, spinlock.o is added to obj-n and
therefore not compiled. In line 3 the file apm.o is handled in a
similar way to spinlock.o. Because the enabling feature APM is
declared as tristate, it might take value m. With the feature selection
from Figure 3 (b), APM has the value m, therefore apm.o is added to
obj-m and compiled as LKM.

Note that instead of mentioning the source files, the makefile
rules reference only the resulting build products. The mapping to
source files is implemented by implicit rules (for details, cf. [26,
Chapter 10]). This mapping has to be considered for any kind of
makefile variability analysis.

2.2.2 Loose Coupling
Programmers specify in KBUILD makefiles the conditions that

lead to the inclusion of source files in the compilation process. As
shown above, this commonly happens by mentioning the respective
build products in the special targets obj-y and obj-m. This works
for the majority of cases, where a feature is implemented by a
single implementation file. However, in order to control complete
subsystems, which generally consist of several implementation files,
the programmer can also include subdirectories:

obj-$(CONFIG_PM) += power/

This line adds the subdirectory power conditionally, depending on
the selection of the feature PM (power management). For each listed
subdirectory, its containing Makefile is evaluated during the build
process. This allows a more coarse-grained control of source file
compilation with KCONFIG configuration options. As we will show
later in this paper, the inclusion of most source files in Linux is
controlled by enabling a single configuration option.

2.3 Challenges in Build-System Analysis
While the selection process described in Section 2.2 is conceptu-

ally simple, an automated analysis is challenging because of engi-
neering reasons. Since KBUILD is implemented with the MAKE tool,
the kernel developer has many possibilities to express constraints.
Not only is MAKE a full-blown programming language that supports
a wide range of operations, including string modifications, condition-
als, and meta-programming, it also allows the execution of arbitrary
further programs ("shell escapes"). The Linux coding guidelines
do not pose any restrictions on what MAKE features should be used

3The idea of this pattern dates back to 1997 and was proposed
by Micheal Elizabeth Castain under the working title "Dancing
Makefiles" (https://lkml.org/lkml/1997/1/29/1). It was
globally integrated into the kernel makefiles by Linus Torvalds
shortly before the release of Linux v2.4.

2 A Robust Approach for Variability Extraction from the Linux Build System

12

in KBUILD. This subsection presents a few selected examples of
constructs that are present in the build system of Linux and are far
more expressive than the standard constructs.

The following example is taken from arch/x86/kvm/Makefile

and uses the function addprefix:

obj-$(CONFIG_KVM_ASYNC_PF) += \
$(addprefix ../../../virt/kvm/, async_pf.o)

The addprefix function takes an arbitrary amount of arguments,
prepends its first argument to the remaining ones, and returns them.
In this case using addprefix is not really necessary, because there
is only one additional argument and the whole expression is equal to
../../../virt/kvm/async_pf.o. Nevertheless, this case requires
special handling with a text-processing–based approach.

In KBUILD, programmers also use generative programming
techniques and loop constructs, like in this excerpt taken from
arch/ia64/kernel/Makefile:

ASM_PARAVIRT_OBJS = ivt.o entry.o fsys.o
define paravirtualized_native
AFLAGS_$(1) += -D__IA64_ASM_PARAVIRTUALIZED_NATIVE
[...]
extra-y += pvchk-$(1)
endef
$(foreach obj,$(ASM_PARAVIRT_OBJS),$(eval $(call

paravirtualized_native,$(obj))))

Here, a list of implementation files (ivt.S, entry.S and fsys.S) not
only need to be included, but also require special compilation flags.
In this example, the macro paravirtualized_native is evaluated
for all three implementation files by the MAKE tool at compilation-
time. Again, for a text-processing–based approach, this corner case
is challenging to implement in a general manner.

Even worse is the shell function, which makes it possible to
spawn an arbitrary external program to let it control (parts of) the
compilation process.

The text-processing–based approaches [4, 18] both fail on the
examples shown above. Luckily – and this comes to their rescue
– these MAKE language features are currently not used very fre-
quently in KBUILD. However, they are used4 and their usage is
not discouraged by Linux coding guidelines. On the longer term,
this implies a danger regarding the robustness of text processing
as a means to extract variability information from the Linux build
system. In the following, we therefore devise a pragmatic approach
that, conceptually and practically, is robust with respect to these
challenges.

3. EXPERIMENTAL PROBING FOR
BUILD-SYSTEM VARIABILITY

In order to enable variability analyses, such as consistency checks
with the KCONFIG feature model [29] or variability aware static anal-
ysis with existing tools [28], the results of the variability extractors
may require a normalization step. Literature proposes propositional
formulas as lingua franca for combining the different sources of
variability (e.g., [4, 13, 15, 18]). Similar to [4, 18] , we extract
propositional formulas that model the behavior of KBUILD, similar
as we did in previous work for the CPP [24].

The set of files that KBUILD produces during the compilation
process depends on selection of features done by KCONFIG. The
basic idea of our approach is to (partially) execute KBUILD with
different feature selections and observe the behavioral changes. This

4In Linux v3.2, we count for shell: 127, foreach: 16, eval: 3, and
addprefix: 88 occurrences.

allows to correlate variability points in the feature model with the
produced build products.

The presence implication of a source file is determined by the
feature selections that include the file in the compilation process.
Therefore, in order to extract the presence implication for a specific
source file, all feature selections that enable this file need to be
recorded. Our approach exploits this observation and determines for
each file all selections that include the file during the compilation
process.

Instead of parsing the makefile, our approach is based on "clever
probing": Basically, we "ask" the build system for each feature
which files it would built. The basic idea is to investigate a feature
selection Sbase, which uses the set Fbase during the compilation
process. Now we add one additional feature f1 to it. The new
feature selection S1 := Sbase + {f1} now compiles the set of files
F1. For every file that is in F1 but not in Fbase we have found a
feature selection that enables this particular file.

3.1 Subdirectories
As discussed in Section 2.2.2, not necessarily all subdirectories in

the Linux source tree are traversed at compilation time. Subdirecto-
ries are therefore not only used to organize files for the programmer,
but also for implementing build-system variability. We address this
in our approach by treating subdirectories that appear in the file
sets Fn+1 in a special way: For each subdirectory we determine the
condition under which the compilation process traverses it. If the
condition is non-trivial, then it is taken as precondition (the "base
expression") to all presence condition of its included files. After pro-
cessing all files in the file set Fn, each of the included subdirectories
is processed recursively.

3.2 From Feature Selections to File Sets
Our approach relies on the following primitive operation to find

the file set and all considered subdirectories that are associated to a
feature selection:

list : Selection 7−→ (FileSet, SubDirs) (1)

This primitive is essential for any build system that implements
variability. There are several options how this can be implemented
for a given build system. As a last resort, the mapping could be
extracted from build traces of a real build process [cf. 2]. However, in
order to avoid unnecessary compilation steps, an efficient extraction
of this mapping is essential.

For KBUILD, our implementation traverses the source tree in the
same way the regular compilation process. Hereby, MAKE collects
all selected files and the visited subdirectories into lists (technically
MAKE variables), which are used internally to drive the compilation.
We make use of these implementation internals and therefore exploit
the built-in KBUILD functionality to ensure an accurate operation of
the list primitive. The full implementation is available for download
from the VAMOS website [30].

As an additional optimization, our implementation ignores logical
constraints that stem from KCONFIG declarations, which allows us
to reduce the number of necessary probing steps. This optimization
would not have been possible to implement using build traces, which
(successfully) compiles and links only valid configurations.

3.3 Base Selection and Added Features
The algorithm starts with the empty selection S∅ as starting point

for the recursion, which serves as base point for the file set and
subdirectory differences. The empty selection contains no selected
feature at all; it is therefore not a valid configuration according
to the KCONFIG model. This base file set only includes files that

2 A Robust Approach for Variability Extraction from the Linux Build System

13

are included in every configuration. One example of such a file is
kernel/fork.c, which is essential for the process creation and
therefore needed in every configuration.

(Fbase, Dbase) = list(S∅) (2)

The files Fbase selected by S∅ are unconditionally compiled into
the kernel. In Linux v3.2 arch-x86, our implementation detects
334 such unconditional files. S∅ also selects the subdirectories
Dbase, which are the starting point for the build system during the
source tree traversal. The presented approach uses Fbase and Dbase

in the same manner as starting point.
In the process of adding single features to the base selection, it is

necessary to know which variables have to be considered. We exploit
the fact that the Linux source tree is organized hierarchically: Each
conditional subdirectory carries, in addition to the base selection,
a base directory dbase. All features referenced in the makefile of a
base directory are added to the list of features to probe.

features_in_dir : Directory 7−→ FeatureSet (3)

For KBUILD, the features_in_dir function is straight-forward to
implement with regular expressions that extract all referenced vari-
ables in the Makefile that start with CONFIG_. This is also some
sort of text processing, but in contrast to the competing approaches
[4, 18], we just extract the feature identifiers and not their (context-
dependent) semantics. Therefore, the features_in_dir function also
detects referential KCONFIG ↔ KBUILD defects, similar as de-
scribed by Nadi and Holt in [18]. By excluding undeclared config-
uration variables from the FeatureSet, we reduce the number of
necessary probing steps.

3.4 Build-System Probing

1: function KBUILDPROBE
2: vDirs← empty set . set of visited dirs
3: filePC← empty map [File→ list [Selection]]
4: (Fbase, Dbase) = list(S∅)
5: for all dbase in Dbase do
6: KBuildProbeRecursion(dbase, S∅, Fbase)
7: end for
8: for all (file, selections) in filePC do
9: toPC(file, selections)

10: end for
11: end function

Figure 4: Starting-Point for the Build-System Probing

Figure 4 shows the recursion step over the source tree for probing
the file presence implications. The recursion is done only once
for each directory. In line 2, a set of already visited directories
is initialized. The resulting selections for each file is stored in
filePC, which holds a list of selections for each file (line 3). For
each directory that is considered by the empty selection S∅, we
start the recursion in line 6 to dig into the source tree beginning at
the directory. After all file sets have been calculated, the presence
implications for all source files are calculated by the helper function
toPC in line 9.

In Figure 5, the recursion step, which is executed for every subdi-
rectory that may be considered by KBUILD, is shown. The function
KBuildProbeRecursion takes three arguments: The first argument
dbase is the directory this function call should focus on. Sbase con-
tains the features that are necessary to visit dbase in the first place.
The third argument is the file set associated with Sbase. Our imple-

1: function KBUILDPROBERECURSION(dbase, Sbase, Fbase)
2: if dbase ∈ vDirs then . already visited
3: return
4: end if
5: vDirs← vDirs ∪ {dbase} . mark as visited
6: features← features_in_dir(dbase)
7: for all f in features do
8: Snew ← Sbase ∪ {f} . add one feature
9: (Fnew, Dnew)← list(Snew)

10: for all file in (Fnew − Fbase) do
11: filePC[file].append(Snew) . new files found
12: end for
13: for all dir in (Dnew −Dbase) do
14: KBuildProbeRecursion(dir, Snew, Fnew)
15: end for
16: end for
17: end function

Figure 5: Recursion step in the Build-System Probing.

mentation avoids unnecessary recalculation of Fbase by caching the
result.

Lines 2 to 5 ensure that each directory is only visited once and the
recursion terminates in finite steps. The function features_in_dir
is called in line 6 to determine all features that are used in the
directory’s makefile. These features will be probed together with the
base selection against this Makefile. A new feature selection Snew

is created (line 8) as an extention to Sbase for each of these features.
For this feature selection, all considered files and subdirectories
are collected by a call to list in line 9. The difference between the
new file set and the old file set are all files that are additionally
enabled by the current feature. The feature selection is added in
line 11 to all additionally enabled files. Similar to this, we recurse
into the file system hierarchy for each newly detected directory in
line 14. The newly detected directory is used as base directory and
Snew, with the associated file set, as base selection. The conversion
from the feature selections to the presence implications for a file is
straightforward:

toPC(File, Selection) = File→
∨

S∈Sels

∧

f∈S

f

 (4)

Each selection is a conjunction of the set features that must be en-
abled in order satisfy the developer-specified KBUILD constraint
to compile the file. Multiple selections occur when there are mul-
tiple rules that require the source file to be compiled. In case of
multiple selections, all selections are disjuncted, because any of
these disjunction leads to the inclusion of the file in the compilation
process.

The resulting propositional formula can by simplified, for instance
by removing selections that are a full subset of another selection.

4. EVALUATION
In the following, we evaluate our approach and compare it to

the existing approaches. We start with a general description and
compare the three respective implementations, which is followed by
analyses regarding run time, robustness and coverage.

4.1 Implementation Overview

The GOLEM tool
We have implemented the algorithms from Section 3 into the GOLEM
tool which is part of our VAMOS [30] toolchain [28, 29]. The
implementation encompasses about 1,000 lines of Python code.

2 A Robust Approach for Variability Extraction from the Linux Build System

14

The KBUILD specific probing primitives are implemented in two
additional "front-end" makefiles (about 120 lines of MAKE code),
so that not a single line in Linux had to be changed for the analysis.
The tools are freely available on the project website.

KBUILDMINER

KBUILDMINER by Berger and She [3] has been presented on a
poster at SPLC ’10 [5] and is further detailed in a technical report
[4]: A fuzzy parser transforms KBUILD makefiles into an abstract
syntax tree (AST), which is then transformed into presence condi-
tions. The implementation consists of about 1,400 lines of Scala
code and 450 lines of Java code. The tool, as well as a result set for
Linux v2.6.33.3, have been downloaded from [3]. Because this tool
requires manual modification of existing makefiles (the technical
report states that for Linux v2.6.28.6, 28 makefiles were adapted
manually [4]), it is not easily possible to apply it to arbitrary versions
of Linux.

The UNDERTAKER Extension by Nadi
Nadi and Holt [18] have implemented their KBUILD extractor in-
dependently from us. Similar to our GOLEM tool, this extractor
calculates logical constraints that our UNDERTAKER tool [29] can
use directly. Their implementation employs pattern matching in
Linux makefiles to identify variability in KBUILD. It consists of
about 750 lines of Java code. While not (yet) publicly available, the
authors have kindly provided us with the version that has been used
in [18].

4.2 Runtime
All parsing-based approaches are (persumably) much faster than

the GOLEM implementation presented in this paper. For KBUILD-
MINER [4], no run-time data is available. The parser by Nadi and
Holt [18] processes a architecture in under 30 seconds. The current
GOLEM implemenation takes approximately 90 minutes per archi-
tecture. The obvious bottleneck is the run-time and the amount of
probing steps, which have been described in Figure 4. For Linux
v3.2 arch-x86, the list operation takes about a second (depending
on the selected features and filesystem cache state) and was executed
7,073 times.

However, the list function does neither modify the analyzed
source tree, nor exhibit other side effects. We therefore see a great
potential in improving the performance by running several prob-
ing steps in parallel. For practical applications, the large runtime
overhead has little big impact on the usability of the approach, be-
cause for many applications, such as the applications in Section 5,
the variability extraction has to be done only once per version and
architecture.

4.3 Robustness
As Linux is a moving target, variability identification and

extraction approaches need to be both conceptually as well as
implementation-wise robust. In order to evaluate the property of
robustness for future versions of Linux, we test on a wide-ranged
number of Linux versions have been retrieved from the git history.
We choose five Linux releases with one year distance that cover
4 years of the Linux development (2008-2012). In order to keep
the results for the various implementations comparable, we refrain
from analyzing earlier versions than Linux v2.6.25, because the
arch-x86 architecture was introduced in v2.6.24 by merging the
32bit and 64bit variants, which were previously maintained sepa-
rately. Table 1 summarizes the results of this analysis.

In general we found it challenging to apply the parsing-based ap-
proaches to Linux versions for which they have not been tailored to.

Table 1: Direct quantitative comparsion over Linux versions
over the last 5 years. The Kernel versions are roughly equidis-
tant over the time and include all version for which dataset are
available for KBUILDMINER and the Nadi Parser.

All source files for v2.6.25 (w/o #included files) 6,826 (127)
Files hit by KBUILDMINER data not available
Files hit by GOLEM 6,274 (93.7%)
Files hit by Nadi parser tool crashes

All source files for v2.6.28.6 (w/o #included files) 7,665 (153)
Files hit by KBUILDMINER 7,243 (96.4%)
Files hit by GOLEM tool 7,032 (93.6%)
Files hit by Nadi parser tool crashes

All source files for v2.6.33.3 (w/o #included files) 9,827 (261)
Files hit by KBUILDMINER 9,090 (95%)
Files hit by GOLEM 9,079 (94.9%)
Files hit by Nadi parser 7,154 (74.8%)

All source files for v2.6.37 (w/o #included files) 10,958 (292)
Files hit by KBUILDMINER data not available
Files hit by GOLEM 10,145 (95.1%)
Files hit by Nadi parser 7,916 (74.2%)

All source files for v3.2 (w/o #included files) 11,862 (276)
Files hit by KBUILDMINER data not available
Files hit by GOLEM 11,050 (95.4%)
Files hit by Nadi parser 8,592 (74.2%)

For the fuzzy-parsing approach presented by Berger et al. [4], there
are only data sets for Linux version v2.6.28.6 [4] and v2.6.33.3 [3]
available. For all other versions we were unable to produce any
results, because of the necessary (but undocumented) changes of the
Linux makefiles. These modifications include the disabling parts
of arch/x86/Makefile in a way that break a regular compilation.
The technical report leaves it open what effects these changes have
on the extracted logical constraints.

The parsing approach presented by Nadi and Holt [18] does not
require any modifications to existing Makefiles. We were able to
produce presence implications for two additional versions. Unfortu-
nately, the tool crashes with an endless recursion and a stack over-
flow on Linux v2.6.28.6 and earlier, so that no logical constraints
could be obtained.

The presented approach and implementation in this article pro-
duces presence implications on all selected versions without requir-
ing any source code modification or version specific adaptations.
Also, the extraction process for the 22 other architectures in Linux
v3.2 did not require any further modification.

As shown in this section, both parsing-based approaches have
difficulties to achieve a robust operation on a wide range of versions.
Since the Linux build system is still in active development and
difficulties like those described in Section 2.3 may appear with every
new version, every new introduced MAKE idiom requires manual
(and thus error-prone) additional engineering in order to keep up
with the Linux development. In contrast to to that, our approach
works in a robust manner with stable results for each version without
any further adaptations.

4.4 Coverage
This subsection compares the results of the three KBUILD vari-

ability extractors quantitatively. We do this by analyzing for how
many source files the respective approach produces a logical formula
as metric for their coverage in the Linux v2.6.33.3 source tree for
arch-x86. We choose this source tree because it is the most recent
version of Linux for which results of all tools are available.

For that version, KBUILD handles a total of 9,827 source files. As
pointed out by Nadi and Holt [17], 276 of these source files (2.8%)
are referenced by #include-statements in other implementation

2 A Robust Approach for Variability Extraction from the Linux Build System

15

Table 2: Configuration Defect Analysis Results with Linux v3.2

Configuration Defects without file constraints
Code defects 1835
Referential defects 415
Logical defects 83
Total: Σ 2333

Configuration Defects with file constraints
Code defects 1835
Referential defects 439
Logical defects 299
Total: Σ 2573

source files rather than KBUILD rules in KBUILD.
The UNDERTAKER extension by Nadi and Holt [18] approach

identifies presence implications for 7,154 out of all source files
(74.8%). For 2,412 source files, no logical implication was found. A
quick analysis of the data indicates that deficiencies in the mapping
from build products to source files (cf. Section 2.2.1) are part of the
problem for this relatively high number.

An analysis of the data provided for KBUILDMINER [3] on the
tool’s website for arch-x86 shows that the tool produces pres-
ence implications for 9,090 out of all source files (95%) on Linux
v2.6.33.3, arch-x86. This data is consistent to the technical re-
port [4], which states a coverage of 94 percent on Linux v2.6.28.6,
arch-x86.

The current implementation of our GOLEM tool calculates pres-
ence implications for 9,079 out of the 9,566 source files on Linux
v2.6.33.3 (94.9%) on arch-x86.

5. APPLICATIONS
As part of the VAMOS project [30], we aim at providing (Linux)

developers tool support for managing and maintaining variability.
This goal includes finding configuration defects [29] and making ex-
isting tools for static analysis variability-aware [28]. The remainder
of this section demonstrates the improvements of considering the
build system in these tools.

5.1 Configuration Defect Analysis
In earlier work [29], we have discussed and analyzed

configuration-derived defects in the variability implementation on
an earlier version of Linux v2.6.35. Such defects are inconsistencies
in the variability implementation, such as #ifdef blocks that either
cannot be selected under any configuration selection (a dead block),
or there is provably no configuration that deselects a CPP block (an
undead block). Our UNDERTAKER tool creates for each #ifdef

block a set of propositional formulas and checks their satisfiability
with a SAT Checker. The first formula includes only the constraints
that are found in the structure of the CPP statements [cf. 24]. If this
formula is unsatisfiable, then the block is classified as a code defect.
If it is satisfiable, logical constraints that derive from the KCONFIG
feature model are added as further conjunctions to the formula. If
the enriched formula is unsatisfiable, the UNDERTAKER tool clas-
sifies the CPP block as a logical defect. This formula may (still)
contain configuration variables that are not declared in the configu-
ration model for this architecture (e.g., CONFIG_ARM is not present on
arch-x86, etc.). The third formula therefore adds contraints to set
such absent variables to false, and checks for satisfiability again. If
this enriched formula is now unsatisfiable, then the UNDERTAKER
tool classifies the CPP block as referential defect.

For this kind of analysis, our tools, which (now) include the
extracted variability from KBUILD, do not only need to be robust
regarding the Linux version, but also the analyzed architecture. A

Table 3: CC-Analysis Results with Linux v3.2, arch-x86

Analyzed files 10,383
Number of variation points (files + #ifdef blocks) 25,369
1. Comparison with ’allyesconfig’

Number of compiler (tool) invocations 10,383
Rate of skipped invocations 18.5%
Configuration Coverage 67.2%

2. Expansion without file constraints
Number of partial configurations 14,169
Rate of skipped tool invocations (partial configurations) 83.6%
Configuration Coverage 37.4%

3. Expansion with file constraints
Number of partial configurations 12,388
Rate of skipped tool invocations (partial configurations) 18.2%
Configuration Coverage 78.6%

more detailed explanation of this experiment can be found in [29].
That work has yielded 1,776 configurability issues, for which 123
patches has been proposed (49 merged, 8 accepted, 15 acknowl-
edged), which in total have fixed 364 of these issues (among them
20 confirmed new bugs).

Table 2 compares the impact of the inclusion of the extracted
source file constraints by our GOLEM tool on the results produced
by the approach as presented in [29]. In this experiment, source file
constraints from all 23 architectures in Linux v3.2 have been used
to enrich the variability models. Every defect is tested against each
architecture individually (where applicable) and classified as such.

In this work, we define as variation point every CPP block and
source file that KCONFIG allows to include or exclude in the re-
sulting build products. This simplifaction is valid, because the
coarse-grained selection of source files by MAKE could also be
implemented by CPP by introducing additional #ifdef blocks that
contain the whole file.

We did not find any dead source files, that is, files that will
never be compiled due to the constraints from KBUILD. We can
therefore confirm that the contributions of Nadi and Holt [18] have
fixed all these "dead files". Nevertheless, by considering KBUILD-
derived constraints, the UNDERTAKER tool detects 216 additional
(+260.2%) logical defects in #ifdef-blocks. The number of con-
figuration defects increases by 10.3 percent. This shows that the
source-file constraints have an considerable improvement on the
results.

5.2 Configuration Coverage
This subsection investigates the effects of the extracted source-

file constraints on the configuration coverage (CC) [28]: We de-
fine CC as the fraction of selected variation points (#ifdef-blocks
and source files as defined in Section 2.1) divided by all possible
variation points. However, one has to be careful with calculating
the "possible" variation points on a specific architecture, because
architecture-specific drivers or #ifdef blocks that test for a specific
other architecture must not be counted. In order to get a fair com-
parison, we use our UNDERTAKER tool to detect such unselectable
variation points in the 11,862 source files considered by KBUILD
on arch-x86 and exclude them from all results in this subsection.

We calculate a set of configurations which, when combined (i.e.,
compile each configuration individually), maximize the CC. This
allows "traditional" tools for static analysis to uncover additional
defects that are hidden in seldomly selected #ifdef-blocks. Table 3
summarizes the results. Since the analyzed source files only ref-
erence a subset of all available KCONFIG features, the produced
configuration are “incomplete” in the sense that they define only
referenced features. Such a partial configuration sets only variation

2 A Robust Approach for Variability Extraction from the Linux Build System

16

points from the extracted software variability [27] of a given source
file. The remaining, unreferenced features need to be set in a way
that they do not conflict in order to obtain a concrete product con-
figuration, upon which traditional tools for static analysis can be
employed. We use the KCONFIG tool to expand such partial to full
configurations.

For comparison purposes, we first calculate the CC for the KCON-
FIG provided configuration preset allyesconfig. Interestingly,
allyesconfig is way off from a "full" configuration, as 1,917
(18.5%) of all source files for arch-x86 are not compiled. This,
and the fact that every file with #else and #elif statements require
more than one configuration to select all lines of code, account for
the missing 32.8% CC.

In previous work [28], we have calculated partial configurations
on all source files, and applied the KCONFIG infrastructure to expand
each partial configuration to a full configuration. In this work, we
consider both, KCONFIG-controlled #ifdef blocks (i.e., #ifdef

blocks with a logical expression that contains at least one reference
to a variable that starts with CONFIG_), as well as the inclusion
of a source file into the compilation process, as a variation point.
Therefore, the numbers of the calculated CC are hard to compare to
those in our previous work [28].

Table 3 shows that the number of calculated configurations is not
much higher than the number of analyzed source files (about 19.3%
more configurations than source files). This number is surprisingly
low because most files in Linux do not contain #ifdef blocks, but
are controlled by at most a single MAKE variable (cf. Section 2.2).
This means the majority of files in Linux require only a single
configuration to achieve full CC.

For each partial configuration, we check if the respective ex-
panded configuration would actually let KBUILD include the file in
the build process. Because of uncovered source file constraints in
the GOLEM implementation and incompleteness of our KCONFIG
variability model, this is not always the case. We do not count
variation points of a partial configuration that does not include its
corresponding file, because this configuration does not practically
cover any variation point.

When calculating the CC without considering source file con-
straints (the second experiment in Table 3), we notice a coverage
of only 9,492 out of 25,369 (37.4%) possible variation points. The
reason for this alarmingly low rate is that 11,844 out of 14,169
(83.6%) variation points have not been considered, because the cal-
culated configuration did not compile the source file for which it
has been calculated.

When calculating the CC with considering the file constraints
(the third experiment in Table 3), we observe a CC of 19,938 out of
25,369 (78.6%) variation points. The reason for this improvement
is that the rate of skipped configurations decreases dramatically to
16.4 percent. This number is still considerable. Since each skipped
configuration provably contains skipped variation points, we ex-
pect that additional engineering (cf. Section 6.1) will considerably
increase the CC even further. Additionally, a first analysis of the cal-
culated partial configurations shows that the quality of the expansion
process still leaves room for improvement: In many expanded con-
figurations, we observe omitted and wrongly set features. Improving
the expansion process would therefore improve the achieved CC as
well.

Because of the skipped partial configurations and the deficiencies
in the expansion process, the improvement of the calculated CC
has to be seen as lower bound that can be greatly improved by
more precise MAKE and KCONFIG models, and better expansion of
partial configurations. We are currently working on improving these
results.

6. DISCUSSION
As demonstrated by the two applications in the previous section,

the implementation of our approach greatly assists variability-aware
analyses. This subsection discusses the limitations and in what way
the results can be transferred to other systems.

6.1 Benefits and Limitations of the Approach
Compared to parsing-based approaches for extracting variability

from the build system [e.g., 4, 13, 18] our approach of build-system
probing exhibits a number of unique characteristics. While existing
parsing-based approaches suffer from technical implementation
challenges that require manual (and error-prone) engineering for
the many corner-cases, our approach handles complicated makefile
constructions as presented in Section 2.3 and shell escapes (i.e.,
invocation of external tools in the build system) error-free. It is
also much harder, as presented in Section 4.3, for a parsing based
approach to keep pace with the Linux development, whereas our
approach works predictably for a wide range of Linux versions and
architectures.

However, we also make a number assumptions on the build sys-
tem, which may impact the results of our approach:

1. We exploit the observation that the file presence implications
in KBUILD correspond to the hierarchical organiztion of di-
rectories along subsystems. If a feature is a prequisite for
enabling files in a subdirectories, then this constraint applies
for each file in that directory.

2. We assume that in a subdirectory, each file is only dependant
on single features and not by a conjunction of two or more
features.

3. In KBUILD, a feature always selects additional sources files
for compilation. In no case the selection of a feature causes
a source file to be removed from compilation process. This
is a rather uncommon feature for MAKE based systems but
more commonly found in systems that employ delta-oriented
programming (DOP) [22].

As shown in Section 4, the current implementation produces pres-
ence implications for 95.4% of all source files in Linux on arch-x86.
An investigation of the remaining 4.6% source files reveales that
the majority of files violate assumption #2. The violation of this
assumption is best explained with an example:

1 my-obj-$(CONFIG_FB_MATROX_G) += matroxfb_crtc2.o
2 obj-$(CONFIG_FB_MATROX) += $(my-obj-y)

Here the the file matroxfb_crtc2.o is only built if both features
FB_MATROX_G and FB_MATROX are enabled at the same time. The
helper function features_in_dir fails to detect that those two features
have a connection. Therefore both features are tested independently
and the build product matroxfb_crtc2.o does not show up in the
output of list.

In the future, we intend to cover these cases by employing some
simple heuristics (e.g., with data from the KCONFIG model) in the
helper function features_in_dir to probe for more than a single con-
figuration variable at the same time without increasing the number of
necessary probing steps excessively. We expect this to improve the
resulting logical constraints both the quantitatively and qualitatively
even further.

Depending on how the extracted build-system constraints are
employed, the higher runtime, compared to other approaches, might
be a limitation of the approach. However many applications require
the KBUILD constraints to be calculated exactly once and reuse

2 A Robust Approach for Variability Extraction from the Linux Build System

17

them in analyses that take much longer compared to the extraction
process. This applies to both applications that have been presented
in Section 5.

6.2 Generalizability
In contrast to the parsing-based approaches, which rely heavily

the idiomatic style in which KBUILD makes use of the MAKE lan-
guage, we avoid this dependency by treating the build system as a
black box. Only two primitives, list and features_in_dir, have to
be reimplemented for other build systems. This thin connection to
the internal structures is the main reason for the robustness of the
probing based approach with respect to the presented application on
a wide range of Linux versions and architectures.

In order to show the portability of our approach, we have imple-
mented the necessary adaptations for two further software projects:
The build system of BUSYBOX [7], a toolbox of UNIX-tools for em-
bedded systems, and the build system of FIASCO [12], a L4-like
micro kernel. Both ports took less than 100 additional lines of code
and were straight-forward to implement. We are convinced that the
assumptions made on KBUILD in Section 6.1 also apply to other
build systems.

6.3 Comparison of the Calculated Source File
Constraints

For a qualitative evaluation of the extracted presence implications,
we compare the output of our GOLEM tool to the results of Berger
et al. [4] and Nadi and Holt [18]. For all the files that have a presence
implication in our model, the presence implication from the other
models is checked for semantic equivalence by using a SAT Checker.

φM1(f)↔ φM2(f) f ∈ files(M1) ∩ files(M2)

This equivalence check is done by instrumenting the SAT checker
to prove that the bi-implication of the presence implications is a
tautology and therefore have always the same implication. We use
this check to compare the GOLEM model to the models of Nadi and
Holt and Berger et al.

For the much smaller model of Nadi and Holt, 15 percent of the
7,082 common files have an equivalent presence implication and
81.9 percent have a presence implication that implies the GOLEM
presence implication. We conclude that this model is mostly sub-
sumed by the GOLEM model.

The comparison of the GOLEM model with the model from Berger
et al. shows that out of 8,885 common files, 99.6 percent fulfill this
bi-implication. This pratical equivalence shows that both tools are
similarly mature.

7. RELATED WORK
The analysis of variability in Linux is a hot topic in the Software

Engineering (SWE) and Software Product Line (SPL) community.
Zengler and Küchlin [31] show an attempt to derive formal seman-
tics of KCONFIG. She et al. [23] reverse-engineer the KCONFIG
variability declaration in order to reconstruct a feature model. In
[10] we have shown and quantified that the fine-grained variability
implementation by CPP is dominated by a more coarse-grained man-
agement in KBUILD. We therefore think that KBUILD variability
extractors, such as KBUILDMINER [3], the Nadi parser [18] or the
GOLEM tool presented in this article, are a necessary complement
for holistic variability analysis.

Berger et al. [6] investigate the configuration languages and tools
KCONFIG and configuration description language (CDL). While
the work shows that variability-management tools are employed
successfully in open-source operating systems, it covers only the
feature specification and modeling.

Adams et al. [2] demonstrate that analysis, visualization and in
essence, re-engineering of the Linux build system is feasible. Their
framework Makao [1] infers modularity in KBUILD by analyzing
build traces. However, the amount of variation points that we iden-
tify in KBUILD with this article indicates that the full re-engineering
of build-system variability remains an unsolved problem.

Kästner et al. [13] propose a technique coined "variability aware
parsing", which essentially integrates the CPP variability into tools
for variability aware type-checking. Mainly because of implemen-
tation challenges, TypeChef focuses on arch-x86 and requires
assistance in form of additional constraints by tools like KBUILD-
MINER [3]. Even with this, the approach is restricted to CPP based
variability—the build-system–derived variability remains out of
scope.

Palix et al. [19] try to reproduce a ten year old analysis on Linux
by Chou et al. [8] in order to investigate the evolutionary develop-
ment of Linux across the last decade. As the old experiment misses
to state the exact configuration that was used, the environment could
only be approximated. Hereby, the paper indirectly discusses CC in
the sense that the selected configuration can (and does) affect the
results of static analysis tools considerably. We take this anecdote
as call for further integration of configuration consistency checks
and CC into static analysis tools.

Inside the software verification community, Post and Sinz [21]
introduce a technique coined "configuration lifting", which translates
the variability expressed in KCONFIG, KBUILD and CPP into C
source code. The generated C files encode the variability of the
original source, the makefiles, and the feature model, and is verified
with the CBMC tool by Clarke, Kroening, and Lerda [9]. While
"configuration lifting" has similar goals, it remains unclear if that
approach scales to the size of Linux.

8. SUMMARY AND CONCLUSION
To cope with a broad range of application and hardware settings,

system software has to be highly configurable. Linux v3.2, as a
prominent example, offers 11,000 configurable features. The imple-
mentation of this huge amount of static variability is implemented
by #ifdef-blocks in the source code, but especially by the Linux
make system. From the maintenance point of view, this imposes
big challenges, as the feature model and the configurability that is
actually implemented in the code have to be kept in sync. This calls
for tool support.

A major hurdle for acceptance by the Linux developers is that
such tools have to work reliably on the latest development version
of Linux. Robustness against evolutionary changes in Linux, which
includes both C code and the build system, is a strong requirement.
In this paper, we have presented such a robust approach for extract-
ing variability from the Linux build system that extracts logical
constraints for 95.4% of all source files in Linux v3.2 on the x86
architecture. Unlike existing approaches, our approach does not try
to analyze the makefiles, but exploits the build system itself to infer
the effects of selected features on the set of compiled files. Instead
of manual and error-prone engineering that tailors the variability
extractor to a specific version or architecture of Linux, our approach
requires only two basic and straightforward to implement primitives.
This thin interface to the build system allows a straight-forward to
implement adaptation of the approach to other software projects,
which has been demonstrated for BUSYBOX [7] and FIASCO [12].

9. ACKNOWLEDGMENTS
We whish to thank our anonymous reviewers for their helpful sug-

gestions. Special thanks got to Sarah Nadi and Thorsten Berger for

2 A Robust Approach for Variability Extraction from the Linux Build System

18

providing access to their tools and data and their helpful comments
on a draft of this paper.

This work was supported by the German Research Council (DFG)
under grants no SCHR 603/7-2 and LO 1719/2-2.

References
[1] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De

Meuter. “Design recovery and maintenance of build systems”. In: Pro-
ceedings of the 23st IEEE International Conference on Software Main-
tainance (ICSM’07). IEEE Computer Society Press, 2007. DOI: 10.
1109/ICSM.2007.4362624.

[2] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De
Meuter. “The Evolution of the Linux Build System”. In: Electronic
Communications of the EASST (2007).

[3] Thorsten Berger and Steven She. Google Code Project: various vari-
ability extraction and analysis tools. URL: http://code.google.
com/p/variability/ (visited on 02/16/2012).

[4] Thorsten Berger, Steven She, Krzysztof Czarnecki, and Andrzej Wa-
sowski. Feature-to-Code Mapping in Two Large Product Lines. Tech-
nical report. University of Leipzig (Germany), University of Waterloo
(Canada), IT University of Copenhagen (Denmark), 2010.

[5] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and
Andrzej Wasowski. “Feature-to-code mapping in two large product
lines”. In: Proceedings of the 14th Software Product Line Conference
(SPLC ’10). Volume 6287. Lecture Notes in Computer Science. Poster
session. Springer-Verlag, 2010.

[6] Thorsten Berger, Steven She, Rafael Lotufo, and Andrzej Wasowski
und Krzysztof Czarnecki. “Variability Modeling in the Real: A Per-
spective from the Operating Systems Domain”. In: Proceedings of the
25th IEEE/ACM International Conference on Automated Software En-
gineering (ASE ’10). ACM Press, 2010. DOI: 10.1145/1858996.
1859010.

[7] BusyBox Project Homepage. URL: http://www.busybox.net/
(visited on 05/11/2012).

[8] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. “An empirical study of operating systems errors”. In: Proceed-
ings of the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01). ACM Press, 2001. DOI: 10.1145/502034.502042.

[9] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for
Checking ANSI-C Programs”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems. Volume 2988. Lecture Notes in
Computer Science. Springer-Verlag, 2004. DOI: 10.1007/978- 3-
540-24730-2_15.

[10] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. “Understanding Linux Feature Distribution”.
In: Proceedings of the 2nd AOSD Workshop on Modularity in Sys-
tems Software (AOSD-MISS ’12). ACM Press, 2012. DOI: 10.1145/
2162024.2162030.

[11] Kai Germaschewski and Sam Ravnborg. “Kernel configuration and
building in Linux 2.5”. In: Proceedings of the Linux Symposium. 2003.

[12] Michael Hohmuth. The Fiasco kernel: System architecture. Technical
report. TU Dresden, 1998.

[13] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian
Erdweg, Klaus Ostermann, and Thorsten Berger. “Variability-Aware
Parsing in the Presence of Lexical Macros and Conditional Com-
pilation”. In: Proceedings of the 26th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA ’11). ACM Press, 2011. DOI: 10.1145/2048066.2048128.

[14] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner,
and Michael Schulze. “An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines”. In: Proceedings of the
32nd International Conference on Software Engineering (ICSE ’10).
ACM Press, 2010. DOI: 10.1145/1806799.1806819.

[15] Marcilio Mendonca, Andrzej Wasowski, and Krzysztof Czarnecki.
“SAT-based analysis of feature models is easy”. In: Proceedings of the
13th Software Product Line Conference (SPLC ’09). Carnegie Mellon
University, 2009.

[16] Andreas Metzger, Patrick Heymans, Klaus Pohl, Pierre-Yves
Schobbens, and Germain Saval. “Disambiguating the Documentation
of Variability in Software Product Lines: A Separation of Concerns,
Formalization and Automated Analysis”. In: Proceedings of the 15th
IEEE Conference on Requirements Engineering (RE ’07). IEEE Com-
puter Society, 2007. DOI: 10.1109/RE.2007.61.

[17] Sarah Nadi and Richard C. Holt. “Make it or Break it: Mining Anoma-
lies from Linux Kbuild”. In: Proceedings of the 18th Working Con-
ference on Reverse Engineering (WCRE ’11). 2011. DOI: 10.1109/
WCRE.2011.46.

[18] Sarah Nadi and Richard C. Holt. “Mining Kbuild to Detect Variability
Anomalies in Linux”. In: Proceedings of the 16th European Confer-
ence on Software Maintenance and Reengineering (CSMR ’12). To
appear. IEEE Computer Society Press, 2012.

[19] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia L.
Lawall, and Gilles Muller. “Faults in Linux: Ten years later”. In: Pro-
ceedings of the 16th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS

’11). ACM Press, 2011. DOI: 10.1145/1950365.1950401.

[20] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag, 2005.

[21] Hendrik Post and Carsten Sinz. “Configuration Lifting: Verifica-
tion meets Software Configuration”. In: Proceedings of the 23th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE ’08). IEEE Computer Society, 2008. DOI: 10.1109/
ASE.2008.45.

[22] Ina Schaefer, Lorenzo Bettini, Ferruccio Damiani, and Nico Tanzarella.
“Delta-oriented programming of software product lines”. In: Proceed-
ings of the 14th Software Product Line Conference (SPLC ’10). Vol-
ume 6287. Lecture Notes in Computer Science. Springer-Verlag, 2010.
DOI: 10.1007/978-3-642-15579-6_6.

[23] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and
Krzysztof Czarnecki. “Reverse Engineering Feature Models”. In: Pro-
ceedings of the 33nd International Conference on Software Engi-
neering (ICSE ’11). ACM Press, 2011. DOI: 10 . 1145 / 1985793 .
1985856.

[24] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolf-
gang Schröder-Preikschat. “Efficient Extraction and Analysis of
Preprocessor-Based Variability”. In: Proceedings of the 9th Interna-
tional Conference on Generative Programming and Component Engi-
neering (GPCE ’10). ACM Press, 2010. DOI: 10.1145/1868294.
1868300.

[25] Diomidis Spinellis. “A Tale of Four Kernels”. In: Proceedings of the
30th International Conference on Software Engineering (ICSE ’08).
ACM Press, 2008. DOI: 10.1145/1368088.1368140.

[26] Richard M. Stallman, Roland McGrath, and Paul D. Smith. GNU make
manual. A Program for Directing Recompilation. Free Software Foun-
dation. GNU Press, 2010.

[27] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. “A Taxonomy of
Variability Realization Techniques”. In: Software - Practice and Expe-
rience 35.8 (2006). DOI: 10.1002/spe.v35:8.

[28] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Eg-
ger, and Julio Sincero. “Configuration Coverage in the Analysis of
Large-Scale System Software”. In: Proceedings of the 6th Work-
shop on Programming Languages and Operating Systems (PLOS ’11).
ACM Press, 2011. DOI: 10.1145/2039239.2039242.

[29] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolf-
gang Schröder-Preikschat. “Feature Consistency in Compile-Time-
Configurable System Software: Facing the Linux 10,000 Feature Prob-
lem”. In: Proceedings of the ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2011 (EuroSys ’11). ACM Press, 2011.
DOI: 10.1145/1966445.1966451.

[30] VAMOS - Variability Management in Operating Systems. FAU
Erlangen-Nuremberg, 2012. URL: http://www4.informatik.uni-
erlangen.de/Research/VAMOS/.

[31] Christoph Zengler and Wolfgang Küchlin. “Encoding the Linux Ker-
nel Configuration in Propositional Logic”. In: Proceedings of the 19th
European Conference on Artificial Intelligence (ECAI 2010) Workshop
on Configuration 2010. 2010.

2 A Robust Approach for Variability Extraction from the Linux Build System

19

3 A portable Approach

3 A portable Approach

Although Linux is a very big example of statically configurable software and
target of many research projects, it is not the only interesting one. There are
other systems with static variability, and many of them involve variability during
the build process. Therefore it is useful to generalize and port the build-system
probing to other systems.
Although the approach, presented in Section 2, is tailored to the build system

used in Linux, the idea is abstract enough to apply it also to other variability
encoding systems. For generalizing the probing it is necessary to get an abstract
model of the structure, for which the approach is applicable.

3.1 Abstracting Build-System Variability

In this section the structure of Kbuild is revisited and a general abstraction,
with Kbuild as a blue print of build systems in mind, is described.
In Section 1.1 the term variation point (VP) was introduced to describe single

variability artifacts. A VP, which resides on the extensional side, is controlled
by zero or more declared features, and effect one aspect of the produced software
variant. In the case of Kbuild, a VP affects whether a file is included into the
compiled kernel or not. So the build system can be seen as a set of VPs.
However, these VPs do not float in the build-system black box (see Figure 2)

in an unstructured way. In Linux the VPs are encoded in a hierarchic system
of Kbuild fragments. Those fragments reference each other and form a tree,
or at least, an directed acyclic graph. The point of variabilitys (POVs) are the
inner nodes and the VPs are the leaf nodes. The Kbuild fragments are orga-
nized hierarchically due the subdirectory structure and a fragment may include
a subdirectory and its fragment under a certain feature selection. This implicit
VP influences all VPs in the subdirectory fragment. In general, we will call an
artifact where VPs are encoded and that might reference other artifacts under
certain constraints a point of variability.
The constraints under which a POV gets referenced or a VP is activated encode

the variability of the system. These constraints might be complex expressions or
fairly simple tests whether a certain feature is selected or not. The presented
approach works best for simple single-feature tests, but can be, as described
later, tuned to work on more complex expressions.
If the structure is a directed acyclic graph (or even a tree) of POVs, at least one

POV must be the top-level one and is not referenced by any other POV. This
POV is the entry point for the build system. In Linux, it is the architecture-
specific top-level Kbuild file. All parsing and probing-based approaches for
handling build system variability start from there and go down according to the
substructures. If there is more than one top-level POV, the process has to be
started for all these top-level POVs.

20

3 A portable Approach

POV0

POV1POV2

POV3

V P0 V P1

V P2

V P3

A2

B1

B2

B3

ε

ε

A1

Build system as a black box

F
ea
tu
re

se
le
ct
io
n

A
ct
iv
e
V
a
ri
a
ti
on

P
o
in
ts

Figure 2: An abstract model of a hierarchic build system with points of variability (POV)
and variation points (VP). Here POV0 is the starting POV

3.2 Finding the Active Variation Points

For the described probing method on Linux it was necessary to obtain a list of
compiled files and subdirectories from a given feature selection. For the general-
ized build system this list operation takes a feature selection and maps it to a
set of activated VPs and POVs.

list : Selection 7−→ (VP-Set, POV-Set)

Hereby it is not important how this mapping is calculated. In the best case,
the build system is instrumented in a way that it outputs this information by
itself. Analyzing build traces might be an option, but dependent on the size of
the system, this will slow down the extraction process immensely.
As an example of the list operation a single mapping for the system modeled

in Figure 2 is:

list(A2 = TRUE) = ({VP0,VP3}, {POV0,POV1})

3.3 Collecting Expressions

On Linux, the inclusion of subdirectories and source-code files is mostly done
by checks if a certain feature is selected. For the recursive exploration of the
hierarchic structure, it is necessary to find all these checks for a given Kbuild

21

3 A portable Approach

fragment. This is done by finding all strings in the Kbuild fragment that start
with CONFIG_ and reference a declared feature.
For the more generalized method a similar operation is needed. It takes a POV

and maps it to a set of all possible expressions that reference another POV or
VP:

expression_in_POV : POV 7−→ Expression

As an example of the expression_in_POV operation some mappings of the
system modeled in Figure 2 are:

expression_in_POV(POV0) = {A1, A2}
expression_in_POV(POV1) = {B1, B2, B3}

3.4 The Common Probing Algorithm

The common probing algorithm is very similar to the one for Linux, which is
described in Section 2.3.4. It is implemented non recursively, but uses a working
stack. While the general idea stays untouched, various extensions are easier to
attach later.

Algorithm 1 The common build probing algorithm.
1: POV_Stack := new Stack() . The working Stack
2: VP_PC := new Map(VP 7→ List of Selections)
3: function CommonBuildProbing
4: TestPov(S∅, ∅, ∅) . Test the empty selection
5: while POV_Stack.size() != 0 do
6: (Sbase, VPbase, POVbase, pov) := POV_Stack.pop()
7: if not ShouldVisitPov(Sbase, pov) then
8: continue
9: end if
10: for all Snew in GenerateSelections(Sbase, pov) do
11: TestPov(Snew, VPbase, POVbase)
12: end for
13: end while
14: PrintAllSelections(VP_PC)
15: end function

The function CommonBuildProbing, which is depicted in Algorithm 1, is
the starting point of the probing algorithm. It uses two global data structures,
which are shared among all presented functions. POV_Stack (line 1) is the working
stack and contains 4-tuple, the work items:

22

3 A portable Approach

type(POV_Stack) = (Sbase,VPbase,POVbase, pov)
The work items consist of a base selection Sbase, that activates the VPs in

VPbase and the POVs in POVbase. Additionally, a specific POV pov from POVbase
is the current working item. The variable VP_PC (line 2) will hold all the found
selections for a specific VP. These selections are the result of the algorithm.
The selection that has no feature enabled is the first selection to be tested

(line 4); all POVs that are unconditional activated are pushed onto the stack by
TestPov for further investigation.
Now the working stack is processed until it is empty. As described, the stack

consists of 4-tupel (line 6). It is checked whether the current working item is
worth working on, otherwise it is skipped (line 7).
Starting from the current POV, all selections that might enable further VPs

or POVs are generated and tested (line 10). This testing with TestPov might
add additional work packages onto the stack, which are processed afterwards.
When the working stack is empty, the mapping from a VP to all activating

selections is printed. This is the step that combines selection and generates
a propositional (line 14). This step is of no further interest and very easy to
implement.

Algorithm 2 The ShouldVisitPov function decides if a POV is visited, when
it was reached with a given selection. A POV should only be visited (again), if
the selection that activated the POV is not a superset of another selection, that
enabled the same POV in the past.
1: global POV_Selections := new Map(POV 7→ List of Selections)
2: function ShouldVisitPov(Snew, pov)
3: for all Svisited in POV_Selections[pov] do
4: if Snew ⊇ Svisited then
5: return FALSE
6: end if
7: end for
8: POV_Selections[pov].append(Snew)
9: return TRUE
10: end function

The decision whether a POV is worth working on is checked in the ShouldVisitPov
function (Algorithm 2). The basic condition for the function is that pov is acti-
vated by Snew. ShouldVisitPov holds a list, POV_Selections, of all selections
that already activated pov in the past (line 1) and checks if Snew is a superset
of any of these selections. This check is done to ensure the termination of the
algorithm. For example would a POV not be revisited again under the selection
{A, B, C} when it was already visited with the selection {A, B}, since the former
selection is a subset of the later.

23

3 A portable Approach

Algorithm 3 After pov was activated by Sbase, further selections are gener-
ated from Sbase and expression_in_POV. The AllFullfillingSelections
function appends all assignments of expr, that evaluate to true, to the base se-
lection Sbase
1: function GenerateSelections(Sbase, pov)
2: Selectionsnew := new List of Selections()
3: for all expr in expression_in_POV (pov) do
4: for all Spartial in AllFullfillingSelections(expr, Sbase) do
5: Selectionsnew.append(Sbase ∪ Spartial)
6: end for
7: end for
8: return Selectionsnew
9: end function

An interesting part of the algorithm is the generation of new selections (Algo-
rithm 3). The basic condition of the function is that pov was activated by Sbase.
It asks the build system for all expressions that belong to this pov (line 3). The
AllFullfillingSelections function, which is not described in detail here,
generates partial selections that fulfill one of these expressions, but do not con-
flict with the base selection Sbase. The partial selections are combined with the
base selection (line 5), and a list of to-be-tested selections is returned. For ex-
ample, if the pov was activated by {A} and has only one expression B ∨ C, the
following selections are generated: {{A, B}, {A, C}, {A, B, C}}.

Algorithm 4 The TestPov function calls the list build-system primitive,
collects all the newly selected VPs and pushes the newly found POVs onto the
working stack.
1: function TestPov(Snew, VPbase, POVbase)
2: (VPnew, POVnew) := list (Snew)
3: for all vp in (VPnew − VPbase) do
4: VP_PC[vp].append(Snew) . VP found under new selection
5: end for
6: . Push new POVs onto the Stack
7: for all pov in (POVnew − POVbase) do
8: POV_Stack.push(new tuple(Snew, VPnew, POVnew, pov))
9: end for
10: end function

The testing of a newly generated selection is done in TestPov (Algorithm 4).
The build system is asked for all items (both VPs and POVs) that are activated
by Snew (line 2). For all VPs that are now activated, but were not activated
before, Snew is added to the list of activating selections for this VP (line 4). All

24

3 A portable Approach

POV0

POV1POV2

POV3

V P0 V P1

V P2

V P3

A2

B1

B2

B3

ε

ε

A1

(a) Probing Step 0, Selection: {}

POV0

POV1POV2

POV3

V P0 V P1

V P2

V P3

A2

B1

B2

B3

ε

ε

A1

(b) Probing Step 1, Selection: {A1}

POV0

POV1POV2

POV3

V P0 V P1

V P2

V P3

A2

B1

B2

B3

ε

ε

A1

(c) Probing Step 2, Selection: {A2}

POV0

POV1POV2

POV3

V P0 V P1

V P2

V P3

A2

B1

B2

B3

ε

ε

A1

(d) Probing Step 3, Selection: {A2, B1}

POV0

POV1POV2

POV3

V P0 V P1

V P2

V P3

A2

B1

B2

B3

ε

ε

A1

(e) Probing Step 4, Selection: {A2, B2}

POV0

POV1POV2

POV3

V P0 V P1

V P2

V P3

A2

B1

B2

B3

ε

ε

A1

(f) Probing Step 5, Selection: {A2, B3}

Figure 3: Steps of the Probing-Algorithm for the build system from Figure 2. The acti-
vated POVs and VPs are highlighted.

25

3 A portable Approach

POVs that are newly activated generate a new 4-tupel work-item on the stack
(line 8). These items are processed in the CommonBuildProbing function
again.

3.5 Exemplary Operation

To visualize the working mechanism of the presented algorithm, the build sys-
tem from Figure 2 will be probed and all steps are explained in detail. The
activated POVs and VPs for each step are shown in Figure 3. We will assume
that each expression checks for a single feature, and therefore results in only one
additional selection and probing step. Each step show the situation after one call
to TestPov is processed.
Probing Step 0: In the first step, the empty selection is probed. It activates
VP0 and POV0, which are pushed onto the stack for further investigations.
Afterward:

VP_PC = { VP0 7→ {∅} }
POV_Stack = [(S∅, {VP0}, {POV0}, POV0)]

Probing Step 1: Now the POV0 is taken from the stack, the two expressions
({A1, A2}) are found, which results in two probing steps (Step 1 and Step 2).
First the expression A1 is full filled by the selection {A1}, which additionally
activates VP1. Afterwards, the stack seems empty, but one additional probing
step is stil pending.
Afterward:

VP_PC = { VP0 7→ {∅}, VP1 7→ {{A1}} }
POV_Stack = []

Probing Step 2: The probing step for POV0 and the expression A2 is done by
the selection of {A2}. This enables POV1, which is put onto the working stack,
and immediately VP3, since it is reachable by a tautology from POV1.
Afterward:

VP_PC = { VP0 7→ {∅}, VP1 7→ {{A1}}, VP3 7→ {{A2}} }
POV_Stack = [({A2}, {VP0, VP3}, {POV0, POV1}, POV1)]

Probing Step 3: POV1 has three expressions {B1, B2, B3}, which will result
in three additional probing steps. First, the expression B1 will be fulfilled by
probing the selection {A2, B1}. POV2 is enabled and pushed onto the stack.
Afterward:

VP_PC = { VP0 7→ {∅}, VP1 7→ {{A1}}, VP3 7→ {{A2}} }
POV_Stack = [({A2, B1}, {VP0, VP3}, {POV0, POV1, POV2}, POV2)]

26

3 A portable Approach

Probing Step 4: B2 is the next expression. It is fulfilled by {A2, B2}. POV3 is
activated and pushed onto the stack.
Afterward:

VP_PC = { VP0 7→ {∅}, VP1 7→ {{A1}}, VP3 7→ {{A2}} }
POV_Stack = [({A2, B1}, {VP0, VP3}, {POV0, POV1, POV2}, POV2),

({A2, B2}, {VP0, VP3}, {POV0, POV1, POV3}, POV3)]

Probing Step 5: B3 is the next expression. It is full filled by {A2, B3}. VP2 is
additionally activated by the selection, and therefore collected.
Afterward:

VP_PC = { VP0 7→ {∅}, VP1 7→ {{A1}}, VP3 7→ {{A2},
VP2 7→ {{A2, B3}} }

POV_Stack = [({A2, B1}, {VP0, VP3}, {POV0, POV1, POV2}, POV2),
({A2, B2}, {VP0, VP3}, {POV0, POV1, POV3}, POV3)]

The remaining items on the stack are popped, but since the to-be-examined
POVs have no further expressions and no associated VPs, no additional calls
to TestPov is done. Therefore the algorithm terminates, and prints out the
collected presence implications:

VP0 → TRUE

VP1 → A1

VP2 → A2 ∧B3

VP3 → A2

3.6 Summary

In this section the algorithm, that was developed for the Linux build system in
Section 2, was rebuilt on top of an abstract build-system model. This build-
system model can be applied, when the variability points are organized as leaf
nodes in an directed acyclic graph with points of variability as inner nodes. On
the edges expressions guard whether the edges is considered by a feature selection.
The common build-system probing was described in detail and a concrete example
was given.

27

4 Fine-Tuning the Probing Approach

4 Fine-Tuning the Probing Approach

Since the course of action described in Section 3 for extracting presence implica-
tions for each VP is rather abstract, it is easy to describe various improvements to
it. These improvements make the approach faster and easier to adapt to various
build systems.

4.1 Parallelization

Control
while POV Stack.size() != 0 do

...
work.push(...)

end while
running := false

Worker 1
while running do

(Snew, VPbase, POVbase) = work.pop();
TestPov(Snew, VPbase, POVbase)

end while

Worker 0
while running do

(Snew, VPbase, POVbase) = work.pop();
TestPov(Snew, VPbase, POVbase)

end while

work.push()

work.push()

POV Stack.push()

POV Stack.push()

Figure 4: Schema of the parallelization with work packages per POV probing step

The explorative nature of the approach results in a big number of calls to the
build-system abstraction layer. These calls (list as well as expression_in_POV)
may take a rather long time. For example, the probing of the Linux build system
for one architecture (there are more than twenty architectures) takes 7000 calls to
list, each of one second. Therefore a parallelization of these calls is a promising
target.
For parallel operation without the need for multiple source trees, the list and

the expression_in_POV primitives have to be side-effect free. This require-
ment forces the primitives to not alter or lock the source tree in any manner.
Then two calls are invariant, regardless whether they are run sequential or in
parallel.
The main function of the approach (Algorithm 1) is implemented sequential,

but with later parallelization in mind. The basic principle, which is depicted
in Figure 4, is to test the single feature selections with TestPov in concurrent
worker threads, which find new POVs that are redirected to one control thread.
This control thread generates new feature selections, which are processed by the

28

4 Fine-Tuning the Probing Approach

workers. For the communication another (synchronized) queue has to be added
to the global scope: work. It contains 3-tupel work items, which are exactly the
three arguments to TestPov. Through the work queue, the to be tested selection
is transported to the worker threads. The worker threads test the selection, fill
newly found files into the VP_PC data structure, and report back newly discovered
POVs via the POV_Stack to the controlling thread.
This parallelization speeds up the probing significantly. For the required 7000

probing steps a modern quad-core computer (3.2 Ghz, 4GB RAM) takes 164 min-
utes, when working sequential. When working in parallel with 6 worker threads
the probing takes 92 minutes.

4.2 Non-Boolean Features

In many build systems not all features are simple boolean switches. Instead
features can have more than two states, where only one (or none) state disables
the feature and all other states enable the feature in a slightly different manner.
An example of this are the tristate features in Linux: Each tristate feature
has three states: n, m and y. The state n disables the feature at all, m compiles the
feature as a loadable kernel modules (LKMs), which can be loaded at runtime,
and y compiles and links the feature static into the kernel.
Another common paradigm is to use string-typed variables with a fixed do-

main of values to distinguish more than two states. For example, a feature
ARM_BOARD with the domain {"omap", "netwinder", "tegra"}, where each
value enables the feature, since the board type cannot be disabled.
The approach can be adopted to this situation. The AllFullFillingSelec-

tions function, which is used in Algorithm 3 in line 4, has to be adapted. It
now examines the cross-product of the domains of the used features. All fulfilling
selections that do not conflict with the base selection are possible new selection.
A simple example of the functions operation is given, all non crossed selections
are returned:

domain(BOARD) ={”omap”, ”tegra”}
domain(MMU) ={���”n”, ”y”}
domain(DRV_A) ={���”n”, ”m”, ”y”}

AllFullFillingSelections(BOARD∧MMU∧DRV_A, {BOARD = ”omap”}) =

((((
(((

((((”omap”, ”n”, ”n”)
((((

((((
((((”omap”, ”n”, ”m”)

(((
((((

((((”omap”, ”n”, ”y”)
((((

(((
((((”omap”, ”y”, ”n”) (”omap”, ”y”, ”m”) (”omap”, ”y”, ”y”)

((((
((((

(((”tegra”, ”n”, ”n”)
(((

((((
((((”tegra”, ”n”, ”m”) (((

((((
((((”tegra”, ”n”, ”y”)

((((
(((

((((”tegra”, ”y”, ”n”)
((((

((((
(((”tegra”, ”y”, ”m”) ((((

((((
((

(”tegra”, ”y”, ”y”)

29

4 Fine-Tuning the Probing Approach

In this example, an expression of three different features is examined. The
three tuples, which are returned here, are the values for (BOARD, MMU, DRV_A). The
feature BOARD has two states, which both enable the feature. However in the base
selection it is preset to "omap" and all possible combinations with BOARD="tegra"
are no possible new selection. In all other crossed out possibilities either MMU is
disabled or the tristate-feature DRV_A is set to n. So only two possible new
selections are returned.

4.3 Implementing Special Cases

The presented build system model is abstract enough to describe most the impor-
tant aspects correctly. But in some cases the model covers a build system almost,
but some parts do not fit. In these cases it is necessary to specialize the unfitting
parts in the used functions, instead of rewriting the whole probing logic. There
are several places where build-system specific adaptions fit in without changing
the modus operandi of the probing. The implementation of the algorithm does
expose hooks at various points. Additionally to the build system primitives, the
build-system driver can influence the algorithm with these hooks:

ShouldVisitPov: If there are parts of the source tree that should not be consid-
ered in the probing, this hook can prevent the recursive descent by filtering the
unwanted POVs out. This might be useful when a subtree of the build system is
too big and unnecessary for the current examination.

GenerateSelections: When there are selections that are invalid and are known
to fail, they can be filtered beforehand to reduce the probing time. Also additional
selections can be added if they are know to reach a certain subtree, which would
not be reached by the automatic probing. By hooking into this function, it is also
possible to add a certain feature, which is known to be needed in each expression
by the build system. For example does the build system of Fiasco need a variable
CONFIG_BSP_NAME to be set when arm is selected as architecture, otherwise it fails
with an error.

PrintAllSelections: The output format can be altered by hooking into this func-
tion. For example, when a boolean model is wanted and it is known that a certain
string-typed feature is caused by a certain boolean feature. In this case the out-
put can be modified before emitting the model. For example, if it is know that
BOARD="omap" is caused by OMAP=y, the sooner can be replaced by the later.

4.4 Summary

In this section a few adaptions of the probing algorithm have been presented.
Parallelization improves the overall probing time by distribution the calls to the

30

4 Fine-Tuning the Probing Approach

build system abstraction to different worker threads. Handling non boolean flags
broadens the field for which the probing algorithm can be applied. The support
for special-casing for different build-systems improves the portability. All of these
fine-tunings were necessary for the porting to different build systems.

31

5 Case Studies

5 Case Studies

The abstract build system, which has been illustrated in Section 3.1, makes it
easy to adapt the approach to various variability encoding systems, given they
fit into the shown structure. Additionally to the port for Linux. two other ports
to BusyBox [13] and Fiasco [14] were done and will be presented.

5.1 Kbuild: Linux

The Linux build system Kbuild is described great detail in various sources [15,
4, 16] and will not be further discussed here. Only the necessary adaptions to
the base algorithm are presented here. In Linux, a source file (compilation unit)
is a VP, and each Kbuild fragment a POV.

Necessary Adaptions: As described in Section 2, the list-primitive is imple-
mented by calling a make fragment that uses the build system scripts itself
and prints out all files that are compiled with a given feature selection. The
expression_in_POV-primitive is a regular expression, which returns all used
CONFIG_-symbols in a given Makefile. This heuristic does only detect simple
expressions (checks on the presence of a single feature). But these simple expres-
sions are the majority of all expressions, since more than 90% of all VPs can be
found with this heuristic.
Since about 40% of all features in Linux are tristate features [2], the non

boolean adaption from Section 4.2 has to be applied to reach also the case where
a source file is compiled to a LKM. Due the huge number of features in Linux
the parallelization from Section 4.1 improves the operation runtime significantly.

Equivalence to the Berger [12] model: In order to give a hint on the quality
of the extracted build-system model, the resulting presence implications were, as
already mentioned in [10], compared to the presence implications extracted by
Berger et al. [12]. This comparison is only a (strong!) hint on the plausibility of
the model, since there is no proof that the Berger model is sound.
The equivalence comparison was done by checking whether the presence im-

plication for each source file is semantically equivalent in both models. When
a presence implications implies the one from the other model in all cases (the
biimplication is a tautology), they might differ in syntax of the boolean formula,
but not in its semantic.
From the 9146 files that have a presence implication in the Berger model (Linux

v.2.6.33.3, arch-x86), [To do: NC wieder fixen]% have also an presence impli-
cation in the model, generated by probing. From these common files, [To do:
NC wieder fixen]% have a semantically equivalent presence implication. In 23
cases, the presence implications have no implication in either direction (None

32

5 Case Studies

of "Berger(file) ↔ Probing(file)", "Berger(file) ← Probing(file)", "Berger(file) →
Probing(file)").

presence implications
Common Files 8940 ([To do: NC wieder fixen]%)

Berger(file) ↔ Probing(file) 8903 ([To do: NC wieder fixen]%)
Berger(file) → Probing(file) 8 ([To do: NC wieder fixen]h)
Berger(file) ← Probing(file) 6 ([To do: NC wieder fixen]h)
Berger(file) 6= Probing(file) 23 ([To do: NC wieder fixen]h)

These numbers show that both methods produce nearly equivalent models.
While the probing-based approach is stable in respect to the development cycle
of Linux, as shown in [10], this is much harder to achieve with an parsing-based
approach.

5.2 Kbuild: BusyBox

BusyBox [13] is a software product that provides many traditional Unix tools for
embedded systems. All tools are packed into a single executable, which behaves
differently when it is called under a different name. When it is called under the
name echo it behaves like the echo tool, when it is called as sed, it behaves like
the stream editor1, etc. BusyBox is a SPL, since the selection of tools that are
put into this "big" executable can be configured at compile time. For many of
the tools, features within a tool can also be configured at compile time.
The porting to BusyBox was rather easy, since BusyBox also uses Kconfig as

configurator and a modified version of Kbuild as build system. Therefore the
build system primitives from Linux could be reused with little modification, and
only 24 lines were added to support BusyBox.

files (of all .c files)
all .c files 710 100%
– helper scripts 26 ([To do: NC wieder fixen]%)
– explicit unused 115 ([To do: NC wieder fixen]%)
– implicit unused 8 ([To do: NC wieder fixen]%)
– #include-ed 22 ([To do: NC wieder fixen]%)
– example code 5 ([To do: NC wieder fixen]%)∑ variation points 534 ([To do: NC wieder fixen]%)
covered by the approach 534 ([To do: NC wieder fixen]%)

The examination of the resulting build-system model gave the following quanti-
tative results: BusyBox 1.20 consists of 710 source files. However not all files are

1http://sed.sourceforge.net/

33

http://sed.sourceforge.net/

5 Case Studies

handled by the build system. We removed all files, which are helper scripts for the
configuration- and build process. Also a big ratio of files is unused and referenced
nowhere. Hereby, explicit unused source files are obviously unused files2, while
implicit unused files are just not referenced from any point. Some source files are
not handled by the build system, but included by a CPP #include statement.
Additionally, some source files are only as example code in the source tree. When
all files, that are obviously not handled by the build system are removed, 534 files
(variation points) remain. For these remaining files, our approach gives presence
implications for every file and achieves a variation point coverage of 100 per cent.

5.3 Fiasco: Hohmuth-Preprocessor

KConfig selection

CONFIG NDEBUG = y

CONFIG MP = y

Modules.ia32

PREPROCESS PARTS-$(CONFIG MP)\
+= mp

kern/per cpu data.cpp

IMPLEMENTATION [!mp]

#if CONFIG NDEBUG

...

Figure 5: Influence of the Kconfig selection in the Fiasco build process: The user se-
lection affects the fine-grained variability in two manners. First the selections
are directly exported as CPP symbols (CONFIG_NDEBUG). Secondly, the Kcon-
fig selection influences the Hohmuth flags that control the implementation and
interface blocks (CONFIG_MP controls mp)

.

Another SPL project is the Fiasco [14] operating system, which is developed at
the TU Dresden and is base of the TUDO:OS system. Fiasco is a L4-Microkernel
that supports various hardware architectures (e.g., x86, ARM and PowerPC)
but can also be run on top of an ordinary x86 Linux. Not only this multitude
of supported hardware architectures is configurable at compile time, but also
software aspects, such as the scheduling mechanism and virtualization features,
can be chosen in the static configuration.
Fiasco also uses Kconfig as configurator for managing the declaration of

features, but on the extensional side the situation is quite different to Linux and
BusyBox. On the coarse-grained granularity a similar approach to that used in
Linux and BusyBox was taken. On the fine-grained level Fiasco does not only

2e.g. files named unused_via_raid.c or subdirectories named old_e2fsprogs

34

5 Case Studies

use the C preprocessor, but also the Hohmuth preprocessor [17]. In this case
study, the focus was not on the coarse-grained variability, since it is very similar
to the mechanisms in Linux and BusyBox. The focus is, how the fine-grained
variability is controlled with the Hohmuth preprocessor.
The Hohmuth preprocessor is a C++-semantic aware preprocessor, which im-

plements features like automatic header generation, automatic inlining of func-
tions, and also the selection of modules. It is described as a “tool [which enables
you] to write unit-style single-source-file modules in C++” [17]. The selection of
modules is done by special Hohmuth flags similar to CPP flags. In Fiasco these
flags are controlled directly by the feature selection.
How these flags are controlled by the selected features in Kconfig, is depicted

in Figure 5. The flags are collected in Modules files that can reference the user
selection. In the example the Hohmuth flag mp is dependent on the Kcon-
fig feature CONFIG_MP. On the fine-grained level, mp controls an implementation
block, that is only selected if mp is not enabled. The presence implication that
has to be extracted in this case, for covering this indirection, is:

mp→ CONFIG_MP

In other cases, the expressions are more complex and a Hohmuth flag depends
on more than one Kconfig feature. Besides the Hohmuth preprocessor, Fiasco
also uses the Kconfig selection directly with the CPP, like the CONFIG_NDEBUG
feature, which is effective within the implementation block.
The Modules files have have make syntax and represent the POVs in this

system. The Hohmuth flags themselves are the controlled VPs. More details
on the Fiasco way of handling extensional variability is described in the bachelor
thesis of Christian Schlumberger [18].
Christian Schlumberger extracted the presence implications for the Hohmuth

flags by hand, but with the presented probing approach it could be automated.
With only 126 lines of code the adaption is also rather small. Especially important
were the hooks for special casing described in Section 4.3. For example, it is
necessary to set the feature BSP_NAME to a correct value, when the feature XARCH
is "ppc" or "arm". Otherwise the build system refuses to work, since the names
of some included files is calculated by the value of BSP_NAME.
The probing resulted in 98 presence implications for 98 Hohmuth flags. As a

validation, all found presence implications were verified by hand and they indeed
reflect the intended variability. It was also verified whether a Hohmuth flag was
missing, and only one flag was not mentioned in the output. Manual investigation
revealed that this flag was depended by a very complex expression, which was
not detected by the expression_in_POV-primitive, since the checked feature
name was calculated by the value of other features.

35

5 Case Studies

5.4 Summary

By porting the approach to three different build systems, I could show, that the
abstract build-system model can be applied to various build systems that are
used in real-world applications. The necessary adaptions were small in regard
to complexity and lines of code. The simplicity of the porting, as well as the
robustness, is reached by the small interface to the build system and the presented
special-case hooks from Section 4.

36

6 Further Related Work

6 Further Related Work

Additionally to the related work that was already discussed in [10], the analysis
of build systems is a hot topic in the software engineering (SWE) and SPL com-
munity. Tamrawi et al. developed an infrastructure and tooling for make system
analysis due symbolic execution [19]. The analysis results in a symbolic execu-
tion trace, which is used for detecting anomalies in Makefiles and does support
refactoring efforts of the build system.
The importance of the build system was shown in several empirical studies on

build code maintenance. Hochstein and Jiao found that build-related code in
scientific software is touched in 19-58% of all commits, while it does represent
only 5-6% of the source code lines. While analyzing the KDE software versioning
system Robles et al. [21] reported that many revisions contain only changes to
build code. McIntosh et al. [22] analyzed ANT-based build systems and could
show that the complexity of source code and build systems co-evolve. Kumfert
and Epperly [23] investigated on the development overhead for maintaining the
build system and revealed that developers claim, that 0%-35.71% of their time is
spent maintaining the build system. All those studies emphasize the importance
of build systems and their analysis.
The idea of exploitative probing of unknown acyclic graphs, presented in this

work, is of course not new. In the computer network area the discovery of net-
work topology is important for simulation and network management. Siamwalla
et al. [24] used active probing heuristics with SNMP, ping requests and BGP in-
formation to discover the topology of intra- and internetworks. Huffaker et al. [25]
describes the skitter tool, which was developed by CAIDA, the cooperative as-
sociation for internet data analysis. It probes the internet routers by sending
ICMP messages with different time-to-live (TTL) values and creates an IP-level
graph from this data. These probing approaches are related to this work, since
they also discover an unknown acyclic graph explorativly. But in contrast to the
network probing the build-system probing acts on static data (at least for one
version the source tree) and has to cope with much more complex expressions at
edges, but has also more control over the probed system. For build systems the
explicit path to a certain node can be chosen (the presence implication), while for
networks the path cannot be influenced for a certain destination and changes over
time. Of course also the goal differs. For build systems the presence implications
are interesting and for networks the explicit graph is needed to perform further
analyzes.

37

7 Conclusion

7 Conclusion

The role build systems have in the variability implementation of a software prod-
uct is immense and much bigger than expected in the past. Therefore has a
variability-aware analysis of a software product take the variability information
in the build system into account. Extracting this information is challenging, es-
pecially when different build systems and more than one version of these should
be analyzed.
In this work an portable and robust approach for extracting this variability

from build systems has been described. It relies on an abstract model, how
build systems encode variability. With this abstract model in mind the approach
has been ported with little effort to the build systems of Linux, BusyBox and
Fiasco. On Linux the approach could extract logical constraints for 95.4% of
all source files in Linux v3.2 on the x86 architecture. While other approaches
failed to extract this information for various versions of Linux, this probing-based
approach worked with a constant high rate of source file coverage. For BusyBox
it even achieved a source file coverage of 100 per cent and for Fiasco all extracted
constraints could be verified for correctness.
However, the soundness of presence implications that are extracted by this

approach was not proven. Also has the approach a higher run time than regular
parsing techniques and is limited to build systems that fit into the presented
model. It failed to achieve a full file coverage on the complex build system of
Linux. Improving this coverage without blowing up the run time remains future
work. The examination, whether the approach is applicable to totally different
variability encoding system, like the intentional feature model, might also be a
piece of future work.
In summary, I could show, that the presented approach is a feasible way for

extracting variability from different build systems. The approach does not require
much manual error-prone engineering to keep up with development cycles and is
efficient enough for a day-to-day use.

38

References

References

[1] Software Engineering Institute. Software Product Lines. URL http://www.
sei.cmu.edu/productlines/. http://www.sei.cmu.edu/productlines/, vis-
ited 18/05/2012.

[2] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. Understanding Linux feature distribution. In Christoph Borchert,
Michael Haupt, and Daniel Lohmann, editors, Proceedings of the 2nd AOSD Work-
shop on Modularity in Systems Software (AOSD-MISS ’12), New York, NY, USA,
2012. ACM Press. ISBN 978-1-4503-1217-2. doi: 10.1145/2162024.2162030.

[3] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. Feature consistency in compile-time-configurable system software:
Facing the Linux 10,000 feature problem. In Christoph M. Kirsch and Gernot
Heiser, editors, Proceedings of the ACM SIGOPS/EuroSys European Conference
on Computer Systems 2011 (EuroSys ’11), pages 47–60, New York, NY, USA,
April 2011. ACM Press. ISBN 978-1-4503-0634-8. doi: 10.1145/1966445.1966451.

[4] Sarah Nadi and Richard C. Holt. Make it or break it: Mining anomalies from linux
kbuild. In Proceedings of the 18th Working Conference on Reverse Engineering
(WCRE ’11), pages 315–324, 2011. doi: 10.1109/WCRE.2011.46.

[5] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and Julio
Sincero. Configuration coverage in the analysis of large-scale system software. In
Eric Eide, Gilles Muller, Olaf Spinczyk, and Wolfgang Schröder-Preikschat, edi-
tors, Proceedings of the 6th Workshop on Programming Languages and Operating
Systems (PLOS ’11), pages 2:1–2:5, New York, NY, USA, 2011. ACM Press. ISBN
978-1-4503-0979-0. doi: 10.1145/2039239.2039242.

[6] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. Variability-aware parsing in the presence of
lexical macros and conditional compilation. In Proceedings of the 26th ACM
Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA ’11), New York, NY, USA, October 2011. ACM Press. doi:
10.1145/2048066.2048128.

[7] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. TypeChef:
Toward type checking #ifdef variability in C. In Proceedings of the 2nd Workshop
on Feature-Oriented Software Development (FOSD ’10), pages 25–32, New York,
NY, USA, October 2010. ACM Press. ISBN 978-1-4503-0208-1. URL http://
www.informatik.uni-marburg.de/~kaestner/FOSD10-typechef.pdf.

[8] Steven She and Thorsten Berger. Formal semantics of the Kconfig language, 2010.

[9] makesite. GNU make – GNU project – Free Software Foundation (FSF). URL
http://www.gnu.org/software/make. http://www.gnu.org/software/make,
visited 2011-11-12.

39

http://www.sei.cmu.edu/productlines/
http://www.sei.cmu.edu/productlines/
http://www.sei.cmu.edu/productlines/
http://www.informatik.uni-marburg.de/~kaestner/FOSD10-typechef.pdf
http://www.informatik.uni-marburg.de/~kaestner/FOSD10-typechef.pdf
http://www.gnu.org/software/make
http://www.gnu.org/software/make

References

[10] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. A robus approach for variability extraction from the linux build sys-
tem. In Proceedings of the 12th Software Product Line Conference (SPLC ’12),
September 2012. (To appear).

[11] Sarah Nadi and Richard C. Holt. Mining Kbuild to detect variability anomalies in
Linux. In Tom Mens, Yiannis Kanellopoulos, and Andreas Winter, editors, Pro-
ceedings of the 16th European Conference on Software Maintenance and Reengi-
neering (CSMR ’12), Washington, DC, USA, 2012. IEEE Computer Society Press.
To appear.

[12] Thorsten Berger, Steven She, Krzysztof Czarnecki, and Andrzej Wasowski.
Feature-to-code mapping in two large product lines. Technical report, Univer-
sity of Leipzig (Germany), University of Waterloo (Canada), IT University of
Copenhagen (Denmark), 2010.

[13] BusyBox project homepage. URL http://www.busybox.net/.

[14] Fiaso project homepage. URL http://os.inf.tu-dresden.de/fiasco/.

[15] Kai Germaschewski and Sam Ravnborg. Kernel configuration and building in linux
2.5. In Proceedings of the Linux Symposium, pages 185–200, 2003.

[16] Michael Elizabeth Chastain, Kai Germaschewski, Sam Ravnborg,
and Jan Engelhardt. Linux Kernel Makefiles, 2011. Available at
Documentation/kbuild/makefiles.txt in the Linux source tree.

[17] Michael Hohmuth. Preprocess - A preprocessor for C and C++ modules, 2005.
Available at http://os.inf.tu-dresden.de/~hohmuth/prj/preprocess/.

[18] Christian Schlumberger. Variabilitätsgewahre Analysen im FIASKO/L4-
Mikrokernel, 2012.

[19] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N. Nguyen.
Build code analysis with symbolic evaluation. In Proceedings of the 34nd Interna-
tional Conference on Software Engineering (ICSE ’12), 2012.

[20] Lorin Hochstein and Yang Jiao. The cost of the build tax in scientific software.
In International Symposium on Empirical Software Engineering and Measurement
2011 (ESEM ’11), September 2011.

[21] Gregorio Robles, Jesus M. Gonzalez-Barahona, and Juan Julian Merelo. Beyond
source code: The importance of other artifacts in software development (a case
study). Journal of Systems and Software, (9):1233 – 1248, 2006.

[22] S. McIntosh, B. Adams, and A.E. Hassan. The evolution of ant build systems.
In Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on,
pages 42 –51, may 2010.

40

http://www.busybox.net/
http://os.inf.tu-dresden.de/fiasco/
http://os.inf.tu-dresden.de/~hohmuth/prj/preprocess/

List of Figures

[23] G. K. Kumfert and T. G. W. Epperly. Software in the DOE: The Hidden Overhead
of "The Build". Technical report, Lawrence Livermore National Laboratory, 2002.

[24] R. Siamwalla, R. Sharma, and S. Keshav. Discovering internet topology. Technical
report, Cornell University, Ithaca, 1999.

[25] B. Huffaker, D. Plummer, D. Moore, and k. claffy. Topology discovery by active
probing. In Symposium on Applications and the Internet (SAINT), pages 90–96,
Nara, Japan, Jan 2002. SAINT.

List of Figures

1 Abstract overview over the dominance hierarchy of variability im-
plementations (taken from [2]) . 7

2 An abstract model of a hierarchic build system with points of vari-
ability (POV) and variation points (VP). Here POV0 is the starting
POV . 21

3 Steps of the Probing-Algorithm for the build system from Figure 2.
The activated POVs and VPs are highlighted. 25

4 Schema of the parallelization with work packages per POV probing
step . 28

5 Influence of the Kconfig selection in the Fiasco build process:
The user selection affects the fine-grained variability in two man-
ners. First the selections are directly exported as CPP symbols
(CONFIG_NDEBUG). Secondly, the Kconfig selection influences the
Hohmuth flags that control the implementation and interface blocks
(CONFIG_MP controls mp) . 34

41

	Introduction
	Variability at different places
	Variability in Linux
	Build-system Variability-Models

	A Robust Approach for Variability Extraction from the Linux Build System
	A portable Approach
	Abstracting Build-System Variability
	Finding the Active Variation Points
	Collecting Expressions
	The Common Probing Algorithm
	Exemplary Operation
	Summary

	Fine-Tuning the Probing Approach
	Parallelization
	Non-Boolean Features
	Implementing Special Cases
	Summary

	Case Studies
	Kbuild: Linux
	Kbuild: BusyBox
	Fiasco: Hohmuth-Preprocessor
	Summary

	Further Related Work
	Conclusion
	Appendix
	Bibliography
	List of Figures

